Fermat, a French mathematician of the late 17th century, came up with a conjecture that baffled other mathematicians for three and half centuries until Andrew Wiles published a proof in the mid-nineties. Most of you are familiar from high school geometry with the Pythagorean theorem, that the sum of two integers squared may be equal to another integer squared: a2 + b2 = c2, but Fermat imagined a more general problem for integers where an + bn ≠ cn where n>2: Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et generaliter nullam in infinitum ultra quadratum potestatem in duos eiusdem nominis fas est dividere cuius rei demonstrationem mirabilem sane detexi. Hanc marginis exiguitas non caperet. That last bit is the mystery—that the margin was too small for his proof. Many mathematicians believe he did not have a proof, but all the same, he did throw down the gauntlet by making the conjecture. He just wrote the conjecture, that an + bn = cn, is not possible. Wiles’ proof is so complex and convoluted, however, that you have to be a brilliant mathematician to even begin to understand his arguments. For as simple as the Pythagorean theorem looks, Fermat’s conjecture is inversely complex, and complex in ways that not even a great mathematician can dream. The conjecture looks simple, but the answer seems to be one of the most complex ever proved in the history of mathematics. The proof, almost as elusive as the Holy Grail, is unintelligible to the average lay person, and difficult for even the gifted. What kind of mind does it take to fathom the dark and profound reaches of Fermat’s conjecture? This conjecture, according to a French academy of math, has the dubious honor of having the highest number of incorrect proofs written about it. In other words, many mathematicians have tried to conquer the proof, but died ignominiously on the battlefield without having succeeded. That fact that Wiles did his work in secret suggests that even he thought the little problem might be paradoxically unsolvable—a no-win scenario, as it were, and a career-ending catastrophe. That there is, after all, a solution to Fermat’s last theorem is of little consolation to all of that failure. (Sorry mathematicians,formatting limitations don’t allow for the little raised numbers in the equations.)