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Abstract. In this paper we compute the topological entropy and we consider

the question of ω-chaos for shift spaces over countable alphabets. We show

that if a shift space has the weak specification property, then it has ω-chaos,
and we show that if, in addition, it has a countably infinite alphabet, then it

has infinite topological entropy.

1. Introduction

It is a common construction to take a set of symbols, say n = {0, . . . , n − 1},
with the discrete topology and consider the set of all possible infinite words over
the alphabet, i.e. words of the form

w = w0w1w2 . . .

with each wi ∈ {0, . . . , n− 1}, equipped with the product topology, along with the
natural shift map, σ, defined by

σ(w) = σ(w0w1w2 . . . ) = w1w2w3 . . . .

The dynamical system that arises from this alphabet and map is denoted by (nω, σ)
with ω = N ∪ {0} and σ : nω → nω as defined above. This system is called the full
one-sided shift on n symbols and is fundamental in the study of symbolic dynamics.
While this system is simple to describe, the dynamics are indeed quite complicated.
For example, it is well-known that (nω, σ) is chaotic in the sense of Devaney, Li
and Yorke, and its topological entropy is log(n), [17] and [15].

A subshift of nω is a compact σ-invariant subset of nω. For n > 1, there are
uncountably many distinct subshifts [9], and these subshifts display a wide variety
of dynamics. For example, a significant body of research exists on the classification
of subshifts with various types of chaos, [1], [4], [13], and [18]. In addition to
chaotic dynamics, subshifts have proven to be amenable to analysis of asymptotic
dynamical notions such as ω-limit sets. Indeed, we have several results related to
classifying the structure of ω-limit sets of certain subshifts, [5] and [6]. Even though
such dynamical systems are interesting in their own right, they have a much broader
application, in that many dynamical systems on more complicated spaces can be
described as quotients of subshifts. For example, Baldwin has shown that dendritic
Julia sets in C can be written as countable-to-one quotients of certain subshifts of
(3ω, σ), [2] and [3]. Moreover, he showed that circular Julia sets can also be written
as quotients of subshifts of (4ω, σ). We have used this symbolic representation of
these systems to prove results related to shadowing and classifying ω-limit sets of
these Julia sets, [8] and [7]. Given that the full shift for n > 1 is a dynamical
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system on a topological Cantor set, it is immediate that the underlying spaces for
subshifts is also totally disconnected. In light of this, it is clear that the quotients
mentioned above are necessarily quite complicated, but they nonetheless allow for
the analysis of these systems through the analysis of the related subshifts. One
type of subshift that is particularly prominent is the family of shifts of finite type.
It has recently been shown by Meddaugh and Good that subshifts of finite type are
a fundamental building block for systems with shadowing [10].

So it is apparent that even though the family of subshifts of symbolic dynamical
systems seems like quite simple mathematical objects, their utility is far-reaching
as encoding sets for much more exotic dynamical systems.

In this paper we focus on symbolic dynamical systems with a countably infinite
alphabet, Σ, equipped with the discrete topology, and with shift map σ acting on
Σω equipped with the product topology. Then (Σω, σ) is the analogous shift space
to (nω, σ). The space Σω is a totally disconnected metric space, and if Σ = N
then we call it Baire Space. Since Σ is countably infinite and has the discrete
topology, Σ and Σω are clearly not compact. This lack of compactness leads to
many complications in the proofs that follow. The techniques that we employ are
slightly different than they would be in the finite alphabet case.

In this paper we extend the results of Lampart and Oprocha [14] by showing that
a closed, σ-invariant subset Γ ⊆ Σω (a subshift of Σω) with the weak specification
property (WSP) has ω-chaos (both terms are defined in the next section.) We also
show that if Γ has an underlying alphabet that is infinite then the system (Γ, σ|Γ)
has infinite topological entropy.

2. Preliminaries

For the purposes of this paper, a dynamical system is a pair (X, f) where X is a
metric space that may or may not be compact and f : X → X is a continuous map.
We will make use of the following notions from the general theory of dynamical
systems.

A dynamical system (X, f) has the specification property provided for every δ > 0
there is some Nδ ∈ N such that for n ≥ 2 and for any n points x1, . . . , xn ∈ X
and any sequence of natural numbers a1 ≤ b1 < a2 ≤ b2 < · · · < an ≤ bn with
ai − bi−1 ≥ Nδ for 2 ≤ i ≤ n there is a point x ∈ X such that d(f j(x), f j(xi)) < δ
for ai ≤ j ≤ bi and 1 ≤ i ≤ n. The map has the weak specification property if
the above holds with n = 2. It is worth noting that some authors additionally
require that the witnessing points for both of these properties by periodic with
some proscribed period. However, for the purposes of this paper, we do not impose
this condition.

The specification property and the weak version are very useful for the construc-
tion of invariant measures on dynamical systems [16, 19, 20].

The topological entropy of the system (X, f) is a measure of the complexity of the
dynamics of the system. There are many notions of topological entropy, especially
if non-compact domains are considered. For the purposes of this paper, we take the
notion of topological entropy as defined by Hofer [11]. For a finite open cover U of
X and natural number n, let ∨nU = {U0 ∩ f−1(U1) ∩ · · · ∩ f1−n(Un−1) : Ui ∈ U}.
This is also a finite open cover of X provided that f is surjective. If we let F(X)
denote the collection of finite open covers of X, the topological entropy of (X, f) is
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the number h(f) given by

h(f) = sup
U∈F(X)

(
lim
n→∞

(
1

n
log | ∨n U|

))
.

Note, that in the event that X is compact, this is equivalent to the standard notions
of topological entropy [11].

For a system (X, f), and x ∈ X, the ω-limit set of x is the set

ω(x) =
⋂
N∈N
{f i(x) : i ≥ N}.

This set is closed and f invariant. In the event that X is compact, it also compact
and nonempty. In the non-compact setting, this is not always the case.

A point x ∈ X is periodic provided that there exists n ∈ N with fn(x) = x. The
set of periodic points is denoted Per(f).

In a system (X, f), we say that a set W of cardinality at least two is ω-scrambled
provided that for all x 6= y ∈W ,

(1) ω(x) \ ω(y) is uncountable,
(2) ω(x) ∩ ω(y) 6= ∅, and
(3) ω(x) \ Per(f) 6= ∅.

We say that the system has ω-chaos provided that there is an uncountable ω-
scrambled set.

The primary focus of this paper is on category of dynamical systems known as
shift spaces. Let Σ be an alphabet, i.e. a set equipped with the discrete topology.
There are two natural associated dynamical systems. The first is the full (one-sided)
shift over Σ, i.e. the shift map σ : Σω → Σω defined by

σ(w0w1w2 . . .) = w1w2w3 . . . .

By taking Σω with the product topology, this map is a continuous surjection, but
if |Σ| > 1, it is not injective. The second system is the full two-sided shift over Σ,
which consists of the natural shift map σ acting on the set ΣZ of bi-infinite words
from Σ. If ΣZ is given the product topology, then σ is a homeomorphism in this
setting. The results of this paper are established in the case of Σω but the proofs
can be easily modified for the case of ΣZ.

Typically it is assumed that the alphabet is finite, but in this paper we allow
Σ to be countable (either finite or countably infinite.) In this context, we define a
subshift of Σω to be a closed σ-invariant subset. Note that in the more commonly
studied case of Σ being finite, subshifts are taken to be compact while in the general
case we do not require compactness.

In the case that Σ = N ∪ {0}, Σω is the Baire space and any subshift Γ ⊆ Σω is
called a countable state Markov shift.

The product topology on Σω is compatible with the following metric on Σω. For
x, y ∈ Σω, define

d(x, y) =

∞∑
i=0

ai
2i

where

ai =

{
0, if xi = yi;
1, otherwise.
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Let Σ∗ denote the finite length words over the alphabet Σ. Given some w ∈ Σ∗

let |w| denote its length. Given i, j ∈ ω with i < j, define w[i,j] = wi . . . wj and
w[i,j) = wi . . . wj−1, with w(i,j] and w(i,j) defined analogously. Given a subshift
Γ ⊂ Σω and m ∈ N, let the set of m-allowed words, Bm(Γ), be the set of all words,
w, of length m such that there is some x ∈ Γ and i ∈ ω such that x[i,i+m) = w.
The language of Γ is the set

B(Γ) =
⋃
m∈N

Bm(Γ)

of finite allowed words for Γ.
If w is a finite word of some length, say k ∈ N, then the cylinder set defined by

w is the set

[w] = {x ∈ Γ : x[0,k) = w}.
The collection of all cylinder sets forms a basis for the topology on Γ. It is easy to
see that each [w] is clopen, but in general they are not compact sets. We refer to
all v ∈ B(Γ) with v[0,k) = w as the extensions of w and for each such v we say that
w is an initial segment or initial subword of v.

A significant benefit of working in shift spaces over the full generality of dy-
namical systems is that there are often reasonable characterizations of complicated
dynamical properties in terms of the language of the shift. The following lemma is
of this flavor, allowing the WSP property to be nicely characterized.

Lemma 1. Let Σ be a countable (finite or infinite) alphabet, and let Γ be a subshift
of Σω with language B(Γ). Then Γ has the WSP if, and only if, there is some n ∈ N
such that for every u, v ∈ B(Γ) there is a word w of length n such that uwv ∈ B(Γ).

Proof. Suppose that Γ has the WSP. Let n = N1/2 ∈ N be chosen by the WSP for

δ = 1
2 . Let u, v ∈ B(Γ). Let s ∈ [u], and let t ∈ σ−(|u|+n)([v]). Let a1 = 0, b1 = |u|

and a2 = |u|+n and b2 = |u|+n+ |v|. Then the point x ∈ Γ that has the property
that d(σi(x), σi(s)) < 1

2 for 0 = a1 ≤ i ≤ b1 = |u| will agree with s for its first
|u|-many symbols, i.e. x[a1,b1) = u. Thus x has u as an initial segment. Moreover,

d(σi(x), σi(t)) < 1
2 for |u| + n = a2 ≤ i ≤ b2 = |u| + n + |v| implies that in fact

x[a2,b2] = t[a2,b2]. Then x has a subword, w = x[b1,a2), of length n such that uwv is
an initial segment of x. So uwv ∈ B(Γ).

Now, instead, suppose that there is some n ∈ N such that for every u, v ∈ B(Γ)
there is a word w ∈ B(Γ) of length n with uwv ∈ B(Γ). Let δ > 0. Choose Mδ ∈ N
so that Mδ > n and so large that if x, y ∈ Γ have x[0,Mδ] = y[0,Mδ] then d(x, y) < δ.
Let Nδ = Mδ + n. Let y, z ∈ Γ and let a1 ≤ b1 < a2 ≤ b2 with a2 − b1 ≥ Nδ.

Let u be the initial segment of y of length b1 +Mδ, and let v be the segment of
z from position b1 +Nδ to b2 +Mδ. Then by our assumptions there is a word w of
length n with uwv ∈ B(Γ). Let x ∈ Γ have uwv as its initial segment. This x has
the property that

x[i,i+Mδ] = y[i,i+Mδ]

for i ∈ {0, . . . , b1} specifically this will hold for all i ∈ N with a1 ≤ i ≤ b1. From
this it follows that

d(σi(x), σi(y)) < δ

for i ∈ N with a1 ≤ i ≤ b1. Moreover,

x[i,i+Mδ] = z[i,i+Mδ]
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for i ∈ {b1 +Nδ, . . . b2}, specifically this will hold for all i ∈ N with a2 ≤ i ≤ b2. So
we have

d(σi(x), σi(z)) < δ

for i ∈ N with a2 ≤ i ≤ b2. Thus (Γ, σ) has the WSP. �

For a given k ∈ N, we will write u ∗(k) v to mean the concatenation of u and
v with some word w of length k when the actual word is not relevant. With this
notation we can re-state the lemma above as Γ has the WSP if, and only if, ∃n ∈ N
such that for every u, v ∈ B(Γ)

u ∗(n) v ∈ B(Γ).

We refer to the n in the previous lemma as the WSP number for Γ.
We would like to use this lemma to define points in Γ via infinite concatenation.

For instance if (ui)i∈N is an infinite sequence of words in B(Γ) we would like to be
able to build a word

x = u1 ∗(n) u2 ∗(n) u3 . . . . . .

In the case that Σ is finite there is never any difficulty in using the ∗(n) notation
and defining such a point since Γ is compact in this setting and there are only
finitely many words of length n that could fill in for the ∗(n). But in the case that
Σ is countably infinite, we only assume that Γ is closed, and we can have infinitely
many choices for the various ∗(n) words. The simple lemma below shows how to
construct such a point in this case.

Lemma 2. Let Σ be a countable alphabet, and let Γ ⊆ Σω be a subshift with the
WSP and WSP number n. Let (ui)i∈N be a sequence of finite words in B(Γ). Then
there exists a sequence of words, (wi)i∈N, in B(Γ) of length n and a point x ∈ Γ
such that

x = u1w1u2w2 . . . ujwj . . . . . .

Proof. By the WSP there is a word w0 ∈ Bn(Γ) such that U1 = u1w1u2 ∈ B(Γ).
Let x1 ∈ [U1]. Suppose that (wi)

k
i=1 and Uk = u1w1 . . . wkuk+1 ∈ B(Γ) have

been defined, and let xk ∈ [Uk]. Then there is some wk+1 ∈ Bn(Γ) such that
Ukwk+1uk+1 ∈ B(Γ). Let xk+1 ∈ [Uk+1]. Let x = u1w1u2w2 . . . ujwj . . . · · · ∈ Σω.
Since Γ ⊆ Σω is closed and since xk → x we see that x ∈ Γ. �

3. Entropy and ω-chaos for subshifts with the WSP

In this section we begin by considering the entropy of subshifts, Γ, of Σω with Σ
a countably infinite or a finite alphabet and with Γ having the WSP. We show that

subshifts, Γ, with |B1(Γ)| ≥ m and WSP number n have entropy at least log(m)
n+1 . It

follows that subshifts with a countably infinite alphabet, |B1(Γ)| = |N|, have infinite
entropy. We begin by showing that Γ contains a subset that is semi-conjugate to
the full one-sided shift on m-symbols, mω, as long as |B1(Γ)| ≥ m and Γ has the
WSP.

Theorem 3. Let Σω be the full one-sided shift space over the finite or countably
infinite alphabet Σ. Let Γ be a subshift of Σω with the WSP, WSP number n, and
m ∈ N such that |B1(Γ)| ≥ m. Then there is a set Ω ⊆ Γ and a semiconjugacy π
from the system (Ω, σn+1) onto (mω, σ), the full one-sided shift on m symbols.
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Proof. Let {k0, . . . , km−1} ⊆ B1(Γ). For every α = α0α1 · · · ∈ mω, let

Ωα = {x ∈ Γ : x = kα0
∗(n) kα1

∗(n) kα2
. . . for some choice of the ∗(n) s}.

Let
Ω =

⋃
α∈mω

Ωα

and observe that σn+1 maps Ω onto itself. Define π : Ω→ mω by π(x) = α if, and
only if, x ∈ Ωα. It is easy to see that π semiconjugates the action of σn+1 on Ω
with the action of σ on mω. �

Corollary 4. Let Σω be a full shift space over the finite or countably infinite al-
phabet Σ. Let Γ be a subshift of Σω with the WSP, WSP number n, and m ∈ N
such that |B1(Γ)| ≥ m. Then the topological entropy, h(σ|Γ), of the system (Γ, σ)

is at least log(m)
n+1 .

Proof. Let Ω′ =
⋃
i∈n+1 σ

i(Ω) ⊆ Γ. Then σ maps Ω′ onto itself, and it is well
known that h(σ|Γ) ≥ h(σ|Ω) since Ω ⊆ Γ is closed and σ-invariant. Also (n +
1)h(σ|Ω) = h(σn+1|Ω). Finally since (Ω, σn+1) is semiconjugate to (mω, σ) we see
that h(σn+1|Ω) ≥ log(m). The result follows. �

Theorem 5. Let Σω be a full shift space over countably infinite alphabet Σ. Let Γ
be a subshift of Σω with the WSP, WSP number n, and B1(Γ) infinite. Then h(σΓ)
is infinite.

We now turn to the question of ω-chaos. Lampart and Oprocha proved that if
Γ is a subshift of the full shift on n symbols which is not minimal and which has
the WSP property, then Γ exhibits ω-chaos [14]. We extend this result to subshifts
of the full shift on countably infinite alphabets.

Lemma 6. Let Γ be a subshift of Σω where Σ is a countably infinite alphabet.
Assume that Γ has WSP number n and that B1(Γ) is not finite. For each w ∈
B(Γ), [w] contains uncountably many points (pλ)λ∈c with the property that ω(pλ) is
uncountable, contains no periodic points and is disjoint from ω(pγ) for every other
γ ∈ c.

Proof. Fix w ∈ B(Γ), and let ŵ be an extension of w with |ŵ| ≥ n + 1 and such
that the final symbol of ŵ occurs in ŵ exactly once. Since B1(Γ) is infinite, let
k0, k1 ∈ B1(Γ) so that neither k0 nor k1 appears in ŵ. Also, define r = |ŵ|+2n+1.

Let (Mλ)λ∈c be an uncountable collection of disjoint minimal sets in the full
one-sided shift on two symbols, ({k0, k1}ω, σ) [9]. For each λ ∈ c, let µλ ∈Mλ with

µλ = µλ0µ
λ
1µ

λ
2 . . . . . . .

For each N ∈ N, consider the set Eλ(N) of all words in BNr+1(Γ) of the form

µλ0 ∗(n) ŵ ∗(n) µλ1 ∗(n) · · · ŵ ∗(n) µλN .

Since Γ has WSP number n, this set is nonempty and is either finite or countable.
Choose a surjection φN : N→ Eλ(N), and define eλ(N, k) = φN (k).

Now, choose a function ψ : N → N × N such that for each (a, b) ∈ N × N,
ψ−1((a, b)) is cofinal in N.

We now choose an increasing sequence of indices ik as follows. Choose i1 > 0
such that

(µλ)[i1,i1+π1(ψ(1))] = (µλ)[0,π1(ψ(1))].



WEAK SPECIFICATION AND BAIRE SPACE 7

Once ik has been chosen, select ik+1 so that ik+1 > ik + π1(ψ(k)) and so that

(µλ)[ik+1,ik+1+π1(ψ(k+1))] = (µλ)[0,π1(ψ(k+1))].

We now define a specific point pλ of the form

pλ = ŵ ∗(n) µλ0 · · · ∗(n) ŵ ∗(n) µλi1 · · · ∗
(n) ŵ ∗(n) µλi2 · · · ∗

(n) ŵ ∗(n) µλi3 · · · .

In particular, we choose pλ so that

(pλ)[r(1+ik)−n,r(1+ik)−n+π1(ψ(k))] = eλ(ψ(k)).

Notice that, by construction, (pλ)[r(1+k)−n] = µλk and pλ ∈ [w].
Let Pλ = ω(pλ). Since for N ≤ M , each word of Eλ(N) is a subword of a word

of Eλ(M), every word of Eλ(N) occurs infinitely often in pλ.
Now, let ν = ν0ν1ν2 . . . ∈ Mλ. Since Γ has WSP number n, we can find a point

tν = ν0 ∗(n) ŵ ∗(n) ν1 ∗(n) · · · ∈ Γ. For a fixed N ∈ N, there exists M ∈ N such that
ν0ν1 . . . νN is a subword of µλ0µ

λ
1 . . . µ

λ
M , and as such we see that ν0 ∗(n) ŵ∗(n) ν1 ∗(n)

· · · ∗(n) νN is a subword of some word in Eλ(M), and as such occurs infinitely often
in pλ. In particular, tν ∈ Pλ, i.e. Pλ contains representatives for each ν ∈Mλ, and
thus is uncountable. A similar argument shows that, in fact, every element of Pλ is
of this form, i.e. x ∈ Pλ if and only if there exists ν = ν0ν1ν2 . . . ∈ Mλ and k ≤ r
with

x = ∗(k)ν0 ∗(n) ŵ ∗(n) ν1 ∗(n) · · · ŵ ∗(n) νλN ∗(n) · · ·
From this, it follows that Pλ ∩ Per(σ) is empty, as if x ∈ Pλ ∩ Per(σ), the

associated ν ∈Mλ would necessarily be periodic as well, and this is a contradiction.
Suppose for some λ, γ ∈ c we have some x ∈ Pλ ∩ Pγ . Since Mλ and Mγ

are compact and disjoint, there exists a length L and finite words vλ1 , . . . , v
λ
s and

vγ1 , . . . v
γ
t in {0, 1}L such that

Mλ ⊆
s⋃
i=1

[vλs ]

and

Mγ ⊆
t⋃
i=1

[vγi ]

and such that vλi 6= vγj for all 1 ≤ i ≤ s and 1 ≤ j ≤ t.
Without loss of generality, we may assume that x ∈ [ŵ]. Since x is in the ω-

limit set of pλ and pγ , there are increasing sequences (ni)i∈N and (mi)i∈N with
σni(pλ)→ x and σmi(pγ)→ x. Choose I ∈ N so large that

(1) for all i ≥ I, σi(µλ) ∈
⋃s
i=1[vλs ],

(2) for all i ≥ I, σi(µγ) ∈
⋃t
i=1[vγi ], and

(3) for all i ≥ I, σni(pλ) and σmi(pγ) both agree with x for their first Lr many
symbols.

It follows from choice of ŵ that for i ≥ I, ni and mi are multiples of r. For i ≥ I,
define n′i,m

′
i ∈ N so that ni = rn′i and mi = rm′i.

Then, for all 0 ≤ j ≤ L and for all i ≥ I, we have pλjr+rn′
i

= xjr = pγjr+rm′
i

. By

the construction of pλ and pγ we see that µλj+ni = µγj+mi for 0 ≤ j ≤ L and for all

i ≥ I. Since mi and ni are greater than i, this implies that some pair vλu and vγw
are equal, a contradiction. Thus the collection (Pλ)λ∈c is pairwise disjoint.

�
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Corollary 7. Let Γ be a subshift of Σω where Σ is a countably infinite alphabet.
Assume that Γ has WSP number n and that B1(Γ) is not finite. Then Γ is not
minimal.

Proof. For each λ ∈ c, the set Pλ is a closed invariant proper subsystem of Γ, and
thus Γ is not minimal. �

Theorem 8. Let Γ be a subshift of ΣN where Σ is a countably infinite alphabet. If
Γ has WSP and B1(Γ) is not finite, then Γ has ω-chaos.

Proof. Let n be the WSP number for Γ. By Corollary 7, Γ is not minimal, and
so we can fix z ∈ Γ with Orb(z) 6= Γ. Let w ∈ B(Γ) with [w] ∩ Orb(z) = ∅. Let
(pλ)λ∈c be points in [w] guaranteed by Lemma 6. Let r1 < r2 < · · · be an increasing
sequence in N and for each λ ∈ c, let

qλ = z[0,r1] ∗(n) (pλ)[0,r1] ∗(n) z[0,r2] ∗(n) (pλ)[0,r2] · · · .
It is immediate that ω(qλ) contains the point z and the set Pλ. In particular, for
each pair λ, η ∈ c, ω(qλ) ∩ ω(qη) 6= ∅, and ω(qλ) ∩ Per(σ) is uncountable.

To demonstrate that Γ has ω-chaos, all that remains to be shown is that for each
pair γ 6= λ ∈ c, the set ω(qλ) \ ω(qγ) is uncountable. Towards this end, for each
λ 6= γ ∈ c, and suppose y ∈ Pλ ∩ ω(qγ). Without loss of generality, we may also
assume that y ∈ [w].

For each k ∈ N, the initial segment y[0,k) of y occurs infinitely often in qγ . Since

w is an initial segment of y, and [w] ∩ Orb(z) = ∅, y[0,k) is of one of the following
forms.

(1) y[0,k) = z[rl−t,rl] ∗(n) pγ[0,k+1−n−t) for some t < |w| and some l ∈ N,

(2) y[0,k) = ∗(s)pγ[0,k−s) for some s ≤ n, or

(3) y[0,k) = pγ[u,u+k) for some u ≥ 0.

In case (3), we see that either y = σu(pγ) in the event that there is some u
that witnesses this for infinitely many k, or else each initial segment of y occurs
infinitely often in pγ . In the former case, we see that Pγ = ω(y) ⊆ Pλ and in the
latter, we see that y ∈ ω(pγ) = Pγ . In either case, Pλ ∩ Pγ 6= ∅ and therefore
λ = γ, a contradiction.

In cases (1) and (2), there is some fixed m ≤ |w|+ n with y[m,k) = pγ[0,k−m) for

infinitely many k, and so we see that σm(y) = pγ . It follows that Pγ = ω(y) ⊆ Pλ,
i.e. Pγ ∩ Pλ 6= ∅ and so γ = λ, a contradiction.

�

Note that in the preceding, the assumption that B1(Γ) is not finite combined
with the WSP property actually implies the non-minimality that was a necessary
assumption in the theorem of Lampart and Oprocha [14]. In the event that Γ is
a subshift a shift space with countably infinite alphabet with B1(Γ) finite, then Γ
can be considered as a subshift on a finite alphabet, and as such, the results of
Lampart and Oprocha can be applied.

Corollary 9. Let Γ be a subshift of ΣN where Σ is a countable alphabet. If Γ is
not minimal and has the WSP property, then Γ has ω-chaos.

These results are a natural extension of the earlier result due to Lampart and
Oprocha in the finite aphabet case, [14]. In that paper they showed that any
subshift of a finite alphabet shift with the WSP must have ω-chaos, and they asked
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if the result holds in general for a compact metric space, X, with continuous map
f : X → X with the WSP. Hunter and Raines proved that if f : X → X with X
compact and f continuous with the specification property and expansivity near a
fixed point, then the system (X, f) has ω-chaos, [12].

Since shift spaces over countably infinite alphabets are a natural analogue to
non-compact dynamical systems, it is then a natural question to ask if f : Y → Y
is a continuous map on a (non-compact) metric space Y with the specification
property and expansivity near a fixed point, does the system (Y, f) have ω-chaos?
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