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Abstract. Shifts of finite type and the notion of shadowing, or pseudo-orbit

tracing, are powerful tools in the study of dynamical systems. In this paper
we prove that there is a deep and fundamental relationship between these two

concepts.

Let X be a compact totally disconnected space and f : X → X a continuous
map. We demonstrate that f has shadowing if and only if the system (f,X)

is (conjugate to) the inverse limit of a directed system satisfying the Mittag-

Leffler condition and consisting of shifts of finite type. In particular, this
implies that, in the case that X is the Cantor set, f has shadowing if and only

if (f,X) is the inverse limit of a sequence satisfying the Mittag-Leffler condition

and consisting of shifts of finite type. Moreover, in the general compact metric
case, where X is not necessarily totally disconnected, we prove that f has

shadowing if (f,X) is a factor of the inverse limit of a sequence satisfying the
Mittag-Leffler condition and consisting of shifts of finite type by a quotient

that almost lifts pseudo-orbits.

1. Introduction

Given a finite set of symbols, a shift of finite type consists of all infinite (or
bi-infinite) symbol sequences, which do not contain any of a finite list of forbidden
words, under the action of the shift map. Shifts of finite type have applications
across mathematics, for example in Shannon’s theory of information [26] and sta-
tistical mechanics. In particular, they have proved to be a powerful and ubiquitous
tool in the study of hyperbolic dynamical systems. Adler and Weiss [1] and Sinai
[31], for example, obtain Markov partitions for hyperbolic automorphisms of the
torus and Anosov diffeomorphisms respectively, allowing analysis via shifts of finite
type. Generalising the notion of Anosov diffeomorphisms, Smale [33] isolates sub-
systems conjugate to shifts of finite type in certain Axiom A diffeomorphisms. His
fundamental example of a horseshoe, conjugate to the full shift space on two sym-
bols, captures the chaotic behaviour of the diffeomorphism on the nonwandering
set where the map exhibits hyperbolic behaviour. Bowen [6] then shows that the
nonwandering set of any Axiom A diffeomorphism is a factor of a shift of finite type.
In fact, shifts of finite type appear as horseshoes in many systems both hyperbolic
(for example [34, 36]) and otherwise [18].
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For a map f on a metric space X, a sequence 〈xi〉i∈ω is a δ-pseudo-orbit if
d(f(xi), xi+1) < δ. Pseudo-orbits arise naturally in the numerical calculation of
orbits. It turns out that pseudo-orbits can often be tracked within a specified toler-
ance by real orbits, in which case f is said to have the shadowing, or pseudo-orbit
tracing, property. Clearly this is of importance when trying to model a system
numerically (for example [9, 10, 20, 21]), especially when the system is expanding
and errors might grow exponentially (indeed shadowing follows from expansivity
for open maps [25], see also [23]). However, shadowing is also of theoretical im-
portance and the notion can be traced back to the analysis of Anosov and Axiom
A diffeomorphisms. Sinai [32] isolated subsystems of Anosov diffeomorphisms with
shadowing and Bowen [5] proved explicitly that for the larger class of Axiom A
diffeomorphisms, the shadowing property holds on the nonwandering set. However,
Bowen [6] had already used shadowing implicitly as a key step in his proof that the
nonwandering set of an Axiom A diffeomorphism is a factor of a shift of finite type.
The notion of structural stability of a dynamical system was instrumental in the
definitions of both Anosov and Axiom A diffeomorphisms [33] and shadowing plays
a key role in stability theory [22, 24, 35]. Shadowing is also key to characterizing
omega-limit sets [2, 5, 19]. Moreover, fundamental to the current paper is Walters’
result [35] that a shift space has shadowing if and only if it is of finite type.

In this paper we prove that there is a deep and fundamental relationship between
shadowing and shifts of finite type. It is known that shadowing is generic for
homeomorphisms of the Cantor set [3] and that the shifts of finite type form a
dense subset of the space of homeomorphisms on the Cantor set [27]. Hirsch [17]
shows that expanding differentiable maps on closed manifolds are factors of the
full one sided shift. In [6], Bowen considers the induced dynamics on the shift
spaces associated with Markov partitions to show that the action of an Axiom A
diffeomorphism on its non-wandering set is a factor of a shift of finite type. Here
we expand the scope of this type of analysis by considering the actions induced by
f on shift spaces associated with several arbitrary finite open covers of the state
space X, rather than the much more specific Markov partitions. In doing so, we
are able to extend and clarify these results significantly, proving the following.

Theorem 18. Let X be a compact, totally disconnected Hausdorff space. The map
f : X → X has shadowing if and only if (f,X) is conjugate to the inverse limit of
an inverse system satisfying the Mittag-Leffler condition and consisting of shifts of
finite type.

Corollary 19. Let X be the Cantor set, or indeed any compact, totally discon-
nected metric space. The map f : X → X has shadowing if and only if (f,X) is
conjugate to the inverse limit of a sequence satisfying the Mittag-Leffler condition
and consisting of shifts of finite type.

Let X and Y be compact metric spaces and φ : X → Y be a factor map between
the systems f : X → X and g : Y → Y (so that φ

(
f(x)

)
= g

(
φ(x)

)
). We say that

φ almost lifts pseudo-orbits (φ is ALP) if and only if for all ε > 0 and η > 0, there
exists δ > 0 such that for any δ-pseudo-orbit 〈yi〉 in Y , there exists an η-pseudo-
orbit 〈xi〉 in X such that d(φ(xi), yi) < ε.

This notion is also well defined in general Hausdorff spaces (Definition 24).
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Theorem 26. Let X be a compact Hausdorff space. The map f : X → X has
shadowing if (f,X) lifts via a map which is ALP to the inverse limit of an inverse
system satisfying the Mittag-Leffler condition and consisting of shifts of finite type.

Corollary 28. Let X be a compact metric space. The map f : X → X has
shadowing only if (f,X) lifts via a map which is ALP to an inverse limit of a
sequence of shifts of finite type. Additionally, f : X → X has shadowing if (f,X)
lifts via a map which is ALP to the inverse limit of a sequence satisfying the Mittag-
Leffler condition and consisting of shifts of finite type.

The approach we take is topological rather than metric as this seems to provide
the most natural proofs and allows for simple generalizations.

Although we are considering inverse limits of dynamical systems, our techniques
are very similar in flavour to the inverse limit of coupled graph covers which have
been used by a number of authors to study dynamics on Cantor sets, for example
[3, 11, 12, 13, 28, 29, 30].

The paper is arranged as follows. In Section 2, we formally define shadowing,
shift of finite type and the inverse limit of a direct set of dynamical systems. In
Section 3, we characterize shadowing as a topological, rather than metric property,
and prove that an inverse limit satisfying the Mittag-Leffler condition which consists
of systems with shadowing itself has shadowing (Theorem 8). Here we also introduce
the orbit and pseudo-orbit shift spaces associated with a finite open cover of a
dynamical system and observe in Theorem 12 that these capture the dynamics of
f . Section 4 discusses compact, totally disconnected Hausdorff, but not necessarily
metric, dynamical systems, showing that such systems have shadowing if and only if
they are (conjugate to) the inverse limit of a directed system satisfying the Mittag-
Leffler condition and consisting of shifts of finite type (Theorem 18). In Section 5,
we examine the case of systems on general metric spaces, establishing in Theorem
20 a partial analogue to Theorem 18 and Corollary 19. In Section 6, we discuss
factor maps which preserve shadowing and, in light of this, we are able to partially
characterize compact metric and Hausdorff systems with shadowing in Theorem 26
and Corollary 28.

2. Preliminaries and Definitions

By map, we mean a continuous function. The set of natural numbers, including
0, is denoted by ω. A dynamical system, (f,X), consists of a topological space X
and a map f : X → X. In what follows, X need not necessarily be metric, but will
typically be compact Hausdorff. Given two dynamical systems (f,X) and (g, Y ),
a factor map (or semiconjugacy) from (f,X) to (g, Y ) is a map φ : X → Y that
commutes with the dynamics, i.e. φ◦f = g ◦φ. In this case, we say that the system
(g, Y ) lifts via φ to the system (f,X). A factor map which is a homeomorphism is
called a conjugacy.

Definition 1. Let X be a compact metric space and let f : X → X be a contin-
uous function. Let 〈xi〉i∈ω be a sequence in X. Then 〈xi〉i∈ω is a δ-pseudo-orbit
provided d(xi+1, f(xi)) < δ for all i ∈ ω and the point z ε-shadows 〈xi〉i∈ω provided
d(xi, f

i(z)) < ε for all i ∈ ω.
The map f has shadowing (or the pseudo-orbit tracing property) provided that

for all ε > 0 there exists δ > 0 such that every δ-pseudo-orbit is ε-shadowed by a
point.
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A particularly nice characterization of shadowing exists if we restrict our at-
tention to shift spaces. For a finite set Σ, the full one-sided shift with alphabet Σ
consists of the space of infinite sequence in Σ, i.e. Σω using the product topology
on the discrete space Σ and the shift map σ, given by

σ〈xi〉 = 〈xi+1〉.

A shift space is a compact invariant subset X of some full-shift. A shift space
X is a shift of finite type over alphabet Σ if there is a finite collection F of finite
words in Σ for which 〈xi〉 ∈ Σω belongs to X if and only if for all i ≤ j, the word
xixi+1 · · ·xj /∈ F . A shift of finite type is said to be N -step provided that the
length of the longest word in its associated set of forbidden words F is N + 1. As
mentioned above, a shift space has shadowing if and only if it a shift of finite type
[35].

Inverse limit constructions arise in a variety of settings. Many of the results
here hold for arbitrary (non-metric) compact Hausdorff spaces and so we consider
inverse limits of dynamical systems taken along an arbitrary directed set. (Recall
that (Λ,≤) is a directed set provided ≤ is a transitive order for which any pair
x, y has an upper bound x, y ≤ z.) The reader, however, will not miss much by
assuming that the space is compact metric in which case the inverse limit may be
indexed by N.

Definition 2. Let (Λ,≤) be a directed set. For each λ ∈ Λ, let Xλ be a compact
Hausdorff space and, for each pair λ ≤ η, let gηλ : Xη → Xλ be a continuous map.
Then (gηλ, Xλ) is called an inverse system provided that

(1) gλλ is the identity map, and
(2) for λ ≤ η ≤ ν, gνλ = gηλ ◦ gνη .

The inverse limit of (gηλ, Xλ) is the space

lim
←−
{gηλ, Xλ} = {〈xλ〉 ∈ ΠXλ : ∀λ ≤ η xλ = gηλ(xη)}

with topology inherited as a subspace of the Tychonoff product ΠXλ.

Since the inverse limit of compact Hausdorff spaces is a closed subset of the
product space, it is itself compact and Hausdorff. The following easily proved fact
is often useful. If U ⊆ lim

←−
{gηλ, Xλ} is open, and x ∈ U , then there exists λ and

Uλ ⊆ Xλ open with x ∈ π−1
λ (Uλ)∩ lim

←−
{gηλ, Xλ} ⊆ U . That is, the collection of sets

of the form π−1
λ (Uλ)∩ lim

←−
{gηλ, Xλ} for Uλ open in Xλ forms a basis for lim

←−
{gηλ, Xλ}.

Additionally, it is also worth noting that, in this formulation, if the bonding maps gηλ
are surjective, then the restricted projection maps πγ | lim←−{g

η
λ, Xλ} : lim

←−
{gηλ, Xλ} →

Xγ are also surjective. This is easily observed as follows. Fix γ ∈ Λ and z ∈ Xγ . For
µ ≥ γ, define Aµ = {〈xλ〉 ∈ ΠXλ : ∀λ ≤ µ xλ = gµλ(xµ)} ∩ {〈xλ〉 ∈ ΠXλ : xγ = z}.
Since each gηλ is surjective, this is nonempty and compact. Furthermore, if ν ≥ µ,
it is clear that Aν ⊆ Aµ. Hence, the intersection A =

⋂
Aµ is nonempty, consists

only of points belonging to the inverse limit, and has πγ(A) = z.
Now, suppose that for each λ in the directed set Λ, fλ : Xλ → Xλ is a continuous

function. If the bonding maps gηλ commute with the functions fλ, then we can
extend this definition to the family of dynamical systems {(fλ, Xλ) : λ ∈ Λ}.
Specifically we make the following definition.
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Definition 3. Let (Λ,≤) be a directed set. For each λ ∈ Λ, let (fλ, Xλ) be a
dynamical system on a compact Hausdorff space and, for each pair λ ≤ η, let
gηλ : Xη → Xλ be a continuous map. Then (gηλ, (fλ, Xλ)) is called an inverse system
provided that

(1) gλλ is the identity map, and
(2) for λ ≤ η ≤ ν, gνλ = gηλ ◦ gνη , and

(3) for λ ≤ η, fλ ◦ gηλ = gηλ ◦ fη.

The inverse limit of (gηλ, (fλ, Xλ)) is the dynamical system ((fλ)∗, lim←−
{gηλ, Xλ}),

where (fλ)∗ is the induced map given by

(fλ)∗
(
〈xλ〉

)
=
(
fλ(xλ)

)
.

Note that (fλ)∗ is the restriction of the product map
∏
fλ to the inverse limit

lim
←−
{gηλ, Xλ} and is, therefore, continuous. Moreover, it is easy to check that (fλ)∗

maps the inverse limit into itself, and thus ((fλ)∗, lim←−
{gηλ, Xλ}) is indeed a contin-

uous dynamical system.
Given a map f : X → X from a compact metric or Hausdorff space to itself, one

is frequently interested in the inverse limit space lim←−(X, f) = {(xi) : f(xi+1) = xi}
under the action of the shift map σ〈xi〉 = 〈xi+1〉. We note that such spaces are a
special case of Definition 3 applied with Λ = ω, Xn = X and fn = gn+1

n = f for all
n ∈ ω.

An argument similar to that for the surjectivity of the restricted projection
maps demonstrates that if each of the bonding maps gηλ and each of the maps fλ
is surjective, then the induced map (fλ)∗ is also surjective. However, although
many of the inverse limits under consideration in this paper do not have surjective
bonding maps, they do satisfy a less stringent condition.

Definition 4. An inverse system (of spaces or of dynamical systems) satisfies the
Mittag-Leffler condition provided that for all λ ∈ Λ, there exists γ ≥ λ such that
for each η ≥ γ, we have gγλ(Xγ) = gηλ(Xη).

For simplicity of notation going forward, we will say that an inverse system is an
ML inverse system if it satisfies the Mittag-Leffler condition. The Mittag-Leffler
condition for inverse sequences was defined by Grothendieck [15, Definition 13.1.2]
although it is implicit in Bourbaki [4, Chapter II, Theorem 1] (see, for example,
[16] for more on the ML condition).

We note that an inverse system with surjective bonding maps automatically
satisfies the Mittag-Leffler condition. Moreover, in a system satisfying the Mittag-
Leffler condition, if γ witnesses the condition with respect to µ and x ∈ gγµ(Xγ) ⊆
Xµ, then π−1

µ (x) ∩ lim
←−
{gηλ, Xλ} 6= ∅.

It is well known that for any inverse system there is an inverse system sat-
isfying the Mittag-Leffler condition (in fact, one with surjective bonding maps)
which has the same inverse limit. To see this, for each factor space Xλ define
X̃λ =

⋂
η>λ g

η
λ(Xη) and define the bonding map g̃ηλ : X̃η → X̃λ to be the restric-

tion of gηλ. The inclusion maps from X̃λ → Xλ induce a map between the inverse
limits which is easily seen to be a homeomorphism. However, in making this mod-
ification, we lose information about the factor spaces. Indeed, every system on a
compact, totally disconnected Hausdorff space is conjugate to an inverse limit of
shifts of finite type. Thus, by the above argument, every system on a compact,
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totally disconnected Hausdorff space is conjugate to the inverse limit of an inverse
system satisfying the Mittag-Leffler condition, but consisting of subshifts which
may or may not be of finite type. As we shall see, not every such system has the
shadowing property—only those systems which are conjugate to an inverse limit of
an inverse system satisfying the Mittag-Leffler condition and consisting of shifts of
finite type have the shadowing property.

3. Shadowing without Metrics

Shadowing is on first inspection a metric property, and indeed the properties of
metrics often play a role in its investigation and application. However, shadowing
can be viewed as a strictly topological property, defined in terms of finite open
covers, provided that we restrict our attention to compact metric spaces. Similar
observations have been made in [8, 14].

We assume in what follows that the elements of a cover U are non empty open
sets.

Definition 5. Let X be a space, let f : X → X, and let U be a finite open cover
of X.

(1) The sequence 〈xi〉i∈ω is a U-pseudo-orbit provided for every i ∈ ω, there
exists Ui+1 ∈ U with xi+1, f(xi) ∈ Ui+1.

(2) Let 〈Ui〉 be a sequence of elements of U . We say that 〈Ui〉 is a U-pseudo-
orbit pattern provided there is a sequence 〈xi〉 of points in X such that
xi+1, f(xi) ∈ Ui+1 for each i. We say that 〈Ui〉 is a U-orbit pattern provided
there is some z such that f i(z) ∈ Ui for all i.

(3) The point z ∈ X U-shadows 〈xi〉i∈ω provided for each i ∈ ω there exists
Ui ∈ U with xi, f

i(z) ∈ Ui.

Lemma 6. Let X be a compact metric space. Then f : X → X has shadowing if
and only if for every finite open cover U , there exists a finite open cover V, such
that every V-pseudo-orbit is U-shadowed by some point z ∈ X.

Proof. First, suppose that f has the shadowing property and let U be a finite open
cover of X. Fix ε > 0 so that for each ε-ball B in X, there exists U ∈ U with
B ⊆ U . Now, let δ > 0 witness ε-shadowing. Let V be a finite open cover of X
refining U which consists of open sets of diameter less that δ.

Now, Let 〈xi〉 be a sequence in X as in the statement of the lemma. Then
d(xi, f(xi−1)) < diam(Vi) < δ for all i ∈ ω \ 0. In particular, 〈xi〉 is a δ-pseudo-
orbit. Let z ∈ X be an ε-shadowing point for this sequence. Then d(xi, f

i(z)) < ε
for each i ∈ ω, and in particular, {xi, f i(x)} ⊆ Bε(xi). By construction, there
exists Ui ∈ U for which {xi, f i(x)} ⊆ Bε(xi) ⊆ Ui, satisfying the conclusion of the
lemma.

Conversely, let us suppose that f satisfies the open cover condition of the lemma.
Let ε > 0, and consider a finite subcover U of X consisting of ε/2-balls. Let V be
the cover that witnesses the satisfaction of the condition, and choose δ > 0 such
that for each δ-ball in X, there is an element of V which contains it.

Now, fix a δ-pseudo-orbit 〈xi〉. Then for each i ∈ ω \ 0, d(xi, f(xi−1)) < δ,
and hence there exists Vi ∈ V such that xi, f(xi−1) ∈ Vi. Let z ∈ X be the
point guaranteed by the open cover condition. Then, for each i ∈ ω, there exists
Ui ∈ U with xi, f

i(z) ∈ Ui. But Ui is an ε/2-ball and hence d(xi, f
i(x)) < ε, i.e. z

ε-shadows the pseudo-orbit. �
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This observation allows the decoupling of shadowing from the metric, and we
can then take the following definition of shadowing, which is valid for systems with
compact Hausdorff (but not necessarily metric) domain, an application that has
recently seen increased interest [7, 8, 14].

Definition 7. Let X be a (nonempty) compact Hausdorff topological space. The
map f : X → X has shadowing provided that for every finite open cover U , there
exists a finite open cover V such that every V-pseudo-orbit is U-shadowed by a
point of X.

Clearly if the cover V witnesses U-shadowing, the cover V ′ refines V and the
cover U ′ is refined by U , then V ′ witnesses U ′-shadowing.

With this definition in mind, we can prove the following result which will be
important to the characterization of shadowing in Section 4.

Theorem 8. Let f : X → X be conjugate to an ML inverse system consisting of
maps with shadowing on compact spaces. Then f has shadowing.

Proof. Without loss, let (Λ,≤) be a directed set and (f,X) = lim
←−
{gλγ , (fλ, Xλ)}

be an ML inverse system where each of (fλ, Xλ) is a system with shadowing on a
compact space.

Let U be a finite open cover of X. Since X = lim
←−
{gλγ , Xλ}, we can find λ and

a finite open cover Wλ of Xλ so that W = {π−1
λ (W ) ∩ X : W ∈ Wλ} refines U .

There is some γ ≥ λ such that for each η ≥ γ, we have gγλ(Xγ) = gηλ(Xη).
Let Wγ = {(gγλ)−1(W ) : W ∈ Wλ}. Since fγ has shadowing, there is a finite

non-empty open cover Vγ of Xγ such that every Vγ-pseudo orbit is Wγ-shadowed.
Let V = {π−1

γ (V ) ∩ X : V ∈ Vγ} and let 〈xi〉 be a V-pseudo-orbit with pat-

tern 〈π−1
γ (Vi) ∩ X〉. Then for each i ∈ ω, we have f(xi) ∈ f(π−1

γ (Vi) ∩X) ∩
π−1
γ (Vi+1) ∩X 6= ∅. It follows then, that 〈(xi)γ〉 is a Vγ-pseudo-orbit with pattern
〈Vi〉. Since every Vγ-pseudo orbit is Wγ-shadowed, there is some zγ ∈ Xγ and a
sequence 〈Wi〉 of elements from Wγ such that f iγ(zγ), (xi)γ ∈ Wi. Note that this

means that zγ ∈
⋂
f−iγ (Wi) 6= ∅.

Now each Wi is the inverse image of some element ofWλ, so equivalently, we have
a sequence 〈W ′i 〉 ∈ Wλ with (xi)λ ∈ W ′i and with zλ = gγλ(zγ) ∈ gγλ(

⋂
f−iγ (Wi)) ⊆⋂

f−iλ (W ′i ) 6= ∅. In particular, since this is an ML inverse system, there is some

z ∈ X with zλ ∈ gγλ(
⋂
f−iγ (Wi)) ⊆

⋂
f−iλ (W ′i ).

It then follows that f i(z), xi ∈ π−1
λ (W ′i ) ∩X, so that 〈xi〉 is W-shadowed, and

hence U-shadowed as required. �

We wish to capture the dynamics of the map f on X via action of the shift map
induced by f on the space of orbit or pseudo-orbit patterns for certain covers of X.
If U is an open cover then one can prove (as in Lemma 11) that the collection of
all U-pseudo orbit patterns forms a closed subspace of the product space Uω of all
sequences of elements from U (where U is given the discrete topology). This implies
that the collection of all pseudo-orbit patterns of a finite open cover is a subshift
of Uω (and is indeed a shift of finite type). However, the space of all orbit patterns
need not even be closed subset of Uω. To see this consider the period doubling map
θ 7→ 2θ mod 2π on the unit circle [0, 2π). Let U1 = (0, π) and U2 = (π − ε, 0 + ε)
for some suitably small ε. For each n, choose zn near to 0 such that fn+1(zn) = π
and fn+2(z) = 0. Then zn generates an orbit pattern 〈Vn,i〉 such that Vn,i is U1
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for i ≤ n and U2 for i > n. Clearly the sequence of sequences 〈Vn,i〉 converges to
the constant sequence 〈U1, U1, U1, . . . 〉, which is not an orbit pattern for the cover
{U1, U2}, so that the collection of orbit patterns is not closed in Uω. With this in
mind, we have the following definitions.

Definition 9. Let f : X → X be a map on the space X, let U be a finite open
cover of X, each element of which is nonempty and let Uω be the one-sided shift
space on the alphabet U with shift map σ.

(1) The U-orbit space is the set O(U) ⊆ Uω which is the closure of the set
consisting of all sequences 〈Ui〉 in U for which there exists z ∈ X with
f i(z) ∈ Ui.

(2) The U-pseudo-orbit space is the set PO(U) ⊆ Uω consisting of all sequences
〈Ui〉 in U for which there exists a sequence 〈xi〉 with xi+1, f(xi) ∈ Ui+1.

Additionally, for U ∈ U and i ∈ ω, define πi : Uω → U to be projection onto the
i-th coordinate.

The following lemma is immediate and provides an alternate description of O(U)
and PO(U).

Lemma 10. Let f : X → X be a map on X and let U be a finite open cover. Then

O(U) = {〈Ui〉 ∈ Uω :
⋂
f−i(Ui) 6= ∅}

=
⋂
n∈ω
{〈Ui〉 ∈ Uω :

⋂
i≤n

f−i(Ui) 6= ∅}

and

PO(U) = {〈Ui〉 ∈ Uω : f(Ui) ∩ Ui+1 6= ∅}.

As consequence, we have the following relations between O(U), PO(U) and Uω.

Lemma 11. Let f : X → X be a map on X and let U be a finite open cover.
Then, O(U) is a subset of PO(U) and both spaces are subshifts of Uω. In particular,
PO(U) is a 1-step shift of finite type.

Proof. That O(U) ⊆ PO(C) ⊆ Uω is immediate. It is also clear that each of these
spaces is shift invariant. Hence, since O(U) is closed by definition, it is a subshift.

That PO(U) is a 1-step subshift of finite type follows by observing that if 〈Ui〉
is not a pseudo-orbit pattern, then for some i, there f(Ui) ∩ Ui+1 = ∅, and so we
can forbid 〈Ui〉 from PO(U) by forbidding the word UiUi+1. Clearly there are only
finitely many such words. �

If X is compact Hausdorff, then the entire dynamics of a map f are encoded in
the orbit spaces of an appropriate system of covers of X. In particular, let FOC(X)
be the collection of all finite open covers of X. This collection is naturally partially
ordered by refinement and forms a directed set.

Theorem 12. Let f : X → X be a map on the compact Hausdorff space X. Let
{Uλ}λ∈Λ be a cofinal directed subset of FOC(X). Then for all x ∈ X there exists a
choice of Uλ(x) ∈ Uλ with {x} =

⋂
Uλ(x) and furthermore for any such sequence,

we have for all n ∈ ω,

{fn(x)} =
⋂
π0

(
σn
(
O(Uλ) ∩ π−1

0 (Uλ(x))
))
.
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Proof. Let f , Λ, and {Uλ} be as described. Fix x ∈ X. For each λ ∈ Λ, choose
Uλ(x) ∈ Uλ with x ∈ Uλ(x). Then x ∈

⋂
Uλ(x). Furthermore, for all y ∈ X \ {x},

there exists a cover U of X such that if x ∈ U ∈ U , then y /∈ U . Then for any λ ∈ Λ
with Uλ refining U , y /∈ Uλ(x) regardless of choice of Uλ(x), hence y /∈

⋂
Uλ(x) and

therefore y /∈
⋂
Uλ.

Now, for each λ, it is straightforward to show that π0

(
σn
(
O(Uλ) ∩ π−1

0 (Uλ(x))
))

is equal to fn(Uλ(x)). In particular, fn(x) ∈
⋂
π0

(
σn
(
O(Uλ) ∩ π−1

0 (Uλ(x))
))

.

Suppose now that z ∈
⋂
π0

(
σn
(
O(Uλ) ∩ π−1

0 (Uλ(x))
))

. Then for each λ, there
exists xλ ∈ Uλ(x) with z = fn(xλ). But, by construction, x is a limit point of {xλ},
and by continuity, z = fn(x). Hence {fn(x)} =

⋂
π0

(
σn
(
O(Uλ) ∩ π−1

0 (Uλ(x))
))

as claimed. �

It should be noted that for general Hausdorff spaces, the structure of {Uλ} may
be quite complex, but for metric X, it is the case that a sequence of covers will
always suffice and we will make use of this fact in the following sections. In the
metric case, Theorem 12 is equivalent to Theorem 3.9 of [28], although that result
is expressed in terms of graph covers and relations.

4. Characterizing shadowing in totally disconnected spaces

In the sense of Theorem 12, the entire dynamics are encoded by the action of f
on an appropriate collection of refining covers. This is not unlike the way that the
topology is completely encoded as well. In this section we explore this analogy.

In particular, it is well known that a space X is chainable, i.e. can be encoded
with a sequence of refining chains (i.e. finite covers with Ui ∩Uj 6= ∅ if and only if
|i − j| ≤ 1) if and only if X can be written as an inverse limit of arcs. In a sense,
the arc is the fundamental chainable object. In an analogous fashion we show
that shifts of finite type are the fundamental objects among dynamical systems on
totally disconnected spaces with shadowing.

Without loss of generality, in the case that X is totally disconnected compact
Hausdorff, the cofinal directed subset of FOC(X) in Theorem 12 can be taken to
consist of open covers which are each finite collections of pairwise disjoint open
(and hence also closed) sets. For the purposes of the following, we refer to such
finite pairwise disjoint open covers as partitions of X.

Let U and V be arbitrary covers of X with V refining U . Then let ι : V → U be
defined so that V ∩ ι(V ) 6= ∅. In the case that U and V are both partitions, this
is equivalent to asking V ⊆ ι(V ), so that ι is a well-defined function. In general,
if U and V are not partitions, ι is a multifunction and it is this that creates the
obstacle to dealing with non-totally disconnected spaces. We address this issue in
Section 5. When considering partitions, the map ι naturally induces a continuous
map ι : Vω → Uω, the domain of which can then be restricted to O(V) or PO(V)
as appropriate. As the intended domain is typically clear, the symbol ι will be used
for all.

Note that if U is a partition of X, its elements are necessarily compact, and in
this case, it is easy to see that the set of orbit sequences is naturally closed, so that

O(U) = {〈Ui〉 ∈ Uω :
⋂
f−i(Ui) 6= ∅}.
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Lemma 13. Let f : X → X be a map on the compact, totally disconnected Haus-
dorff space X and let U and V be partitions of X with V refining U . Then σ and ι
commute and the following statements hold:

(1) ι(O(V)) = O(U).
(2) O(U) ⊆ ι(PO(V)) ⊆ PO(U).

Proof. It is immediate from their definitions that σ and ι commute on their unre-
stricted domains.

Towards proving statement (1), consider 〈Vi〉 ∈ O(V). Then there is x such that
f i(x) ∈ Vi for all i. But then f i(x) ∈ ι(Vi), so that 〈ι(Vi)〉 ∈ O(U). Conversely,
if 〈Ui〉 ∈ O(U), then we can choose x ∈

⋂
f−i(Ui) 6= ∅. Now choose 〈Vi〉 so that

x ∈ f−1(Vi) for each i. Clearly 〈Vi〉 ∈ O(V). Since V refines U and the elements of
U are pairwise disjoint and clopen, it follows that Vi ⊆ Ui, i.e. 〈Ui〉 = ι〈Vi〉.

Statement (2) follows similarly.
�

The additional structure of totally disconnected spaces allows us to state the
following immediate corollary to Theorem 12. In particular, the collection Part(X)
of partitions of X is a cofinal directed subset of FOC(X). Since the elements of
the covers in Part(X) are closed, the refinement relations of Part(X) are in fact
closure refinements, so all nested intersections are nonempty.

Corollary 14. Let f : X → X be a map on the compact Hausdorff totally discon-
nected space X. Let {Uλ}λ∈Λ be a cofinal directed suborder of Part(X).

Then the system (f,X) is conjugate to (σ∗, lim←−
{ι,O(Uλ)}) by the map

〈wλ〉 7→
⋂
π0(wλ).

It is important to note that the maps ι in the inverse system depend very much
on their domain and range. However, if W refines V which in turn refines U , then
the composition of ι : W → V and ι : V → U is precisely the same as ι : W → U ,
and as such the inverse system is indeed well-defined.

The existence of partitions also allows us to state the following alternative char-
acterization of shadowing.

Lemma 15. Let f : X → X be a map on the compact Hausdorff totally discon-
nected space X. Then f has shadowing if and only if for each U ∈ Part(X), there
exists V ∈ Part(X) which refines U such that for all W ∈ Part(X) which refine V,
ι(PO(W)) = O(U).

Proof. Let f have shadowing and let U ∈ Part(X). Let V be the cover witnessing
shadowing. Without loss of generality, V ∈ Part(X) and V refines U . Now, let
〈xi〉 be a V-pseudo-orbit with 〈Vi〉 its V-pseudo-orbit pattern, and let z ∈ X be
a shadowing point with 〈Ui〉 its shadowing pattern. By definition, xi and f i(z)
belong to Ui, and hence Vi ∩ Ui 6= ∅, and since V refines U and the elements of
U are disjoint, we have Vi ⊆ Ui, i.e. ι(Vi) = Ui and hence ι〈Vi〉 = 〈Ui〉. Thus
ι(PO(V)) ⊆ O(U), and the reverse inclusion is given by Lemma 13, and thus the
two sets are equal. Now, for any W ∈ Part(X) which refines V, observe that
O(U) ⊆ ι(PO(W)) ⊆ ι(PO(V)) = O(U),

Conversely, suppose that f has the stated property regarding open covers. Let
U be a finite open cover of X. Since X is totally disconnected, let U ′ ∈ Part(X)
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which refines U . Let V be the cover witnessing the property with respect to U ′.
Now, let 〈xi〉 be a V-pseudo-orbit and let 〈Vi〉 be its V-pseudo-orbit pattern. By
the property, there exists 〈U ′i〉 ∈ O(U ′) with ι〈Vi〉 = 〈U ′i〉. Now, let z ∈

⋂
f−i(U ′i).

Then xi, f
i(z) ∈ U ′i which in turn is a subset of some Ui ∈ U . In particular, z

U-shadows the V-pseudo-orbit 〈xi〉. �

In light of this, we have the following theorem.

Theorem 16. Let f : X → X be a map with shadowing on the compact totally dis-
connected Hausdorff space X. Let {Uλ}λ∈Λ be a cofinal directed subset of Part(X).

Then the system (σ∗, lim←−
{ι,O(Uλ)}) is conjugate to (σ∗, lim←−

{ι,PO(Uλ)}) and

both systems satisfy the Mittag-Leffler condition.

Proof. First, observe that for each λ, O(Uλ) is a subset of PO(Uλ). It is a standard
result in inverse limit theory that the map j∗ : lim

←−
{ι,O(Uλ)} → lim

←−
{ι,PO(Uλ)}}

induced by inclusion is a continuous injection, and clearly commutes with σ∗. In
fact, this is a surjection, and hence demonstrates the desired conjugacy. This is
easily proven by considering the following.

Define a monotone function p : Λ → Λ such that for each λ ∈ Λ, we have
p(λ) ≥ λ and ι(PO(Up(λ))) = O(Uλ). Then, define the map φ : lim

←−
{ι,PO(Uλ)} →

lim
←−
{ι,O(Uλ)} as follows.

φ(〈wγ〉)λ = ι(wp(λ))

That this is well-defined and continuous is a standard result in inverse limit
theory. As this is induced by the maps ι, it will commute with σ∗.

Now, consider j∗ ◦ φ : lim
←−
{ι,PO(Uλ)} → lim

←−
{ι,PO(Uλ)}. Consider 〈wγ〉 ∈

lim
←−
{ι,PO(Uλ)}. We see that

(j∗ ◦ φ(〈wγ〉))λ = jλ(ι(wp(λ))) = jλ(wλ) = wλ

In particular, j∗ ◦ φ is the identity on lim
←−
{ι,PO(Uλ)}, and since j∗ is injective,

it follows that both j∗ and φ are conjugacies.
It remains to be shown that these systems satisfy the Mittag-Leffler condition.

For the system O(Uλ), note that the inclusion maps are surjective by Lemma 13,
and hence the system has the condition. For the system PO(Uλ), we proceed as
follows. Let λ ∈ Λ and choose γ ≥ λ so that Uγ witnesses Uλ shadowing. Then for
all η ≥ γ, by Lemma 15, we have ιηλ(PO(Uη)) = O(Uλ) = ιγλ(PO(Uγ)).

�

This theorem complements Corollary 14, and by applying Lemma 11, and the
well-known fact that shifts of finite type have shadowing [35], we have the following
result.

Corollary 17. Let f : X → X be a map with shadowing on the compact totally
disconnected Hausdorff space X. Then (f,X) is conjugate to an inverse limit of an
ML inverse system of shifts of finite type.

In fact, this is a complete characterization of totally disconnected systems with
shadowing; the following is an immediate consequence of Corollary 17 and Theorem
8.
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Theorem 18. Let X be a compact, totally disconnected Hausdorff space. The map
f : X → X has shadowing if and only if (f,X) is conjugate to the inverse limit of
an ML inverse system of shifts of finite typ.

Of course, Theorem 18 includes metric systems. However, if X is metric, we may
easily find sequences {Un}n∈N of partitions which are cofinal directed suborders of
Part(X). In particular, we can let U0 = {X}, and for each Ui, let Ui+1 be a partition
of X with mesh less than 2−1 which refines Ui and which witnesses shadowing for Ui.
Then the function p from the proof of Theorem 16 simply increments its input. The
conjugacy then follows from the induced diagonal map ι∗ on the inverse systems as
seen in Figure 1.

O(U0) O(U1) O(U2) O(U3) · · ·lim
←−
{ι,O(Ui)} ι ι ι ι

PO(U0) PO(U1) PO(U2) PO(U3) · · ·lim
←−
{ι,PO(Ui)} ι ι ι ι

ι ι ι ι
j j j jι∗ '

Figure 1. Diagram for the metric case of Theorem 18

This observation immediately implies the following.

Corollary 19. Let X be the Cantor set, or indeed any compact, totally disconnected
metric space. The map f : X → X has shadowing if and only if (f,X) is conjugate
to the inverse limit of an ML sequence of shifts of finite type.

This ad hoc construction of an appropriate sequence of covers can be modified
into a technique that will apply to general compact metric spaces in Section 5.

5. Shadowing in General Metric Systems

Theorem 12 applies equally well to systems in which there are non-trivial con-
nected components, and as such, one might hope for analogue to Corollary 14.

However, as mentioned, the principal obstruction to a direct application of the
methods of Section 4 is that the intersection relation ι is no longer necessarily single-
valued, so that the induced map on the pseudo-orbit space is not only set-valued,
but also not finitely determined. However, by modifiying the approach illustrated
in Figure 1, we are obtain the following. Recall that for a cover C of X and A ⊆ X,
the star of A in C is the set st(A, C) which is the union of all elements of C which
meet A.

Theorem 20. Let X be a compact metric space and f : X → X be a continuous
map with shadowing. Then there is an inverse sequence (gn+1

n , Xn) of shifts of finite
type such that (f,X) is a factor of (σ∗, lim←−

{gn+1
n , Xn}).

Proof. First, observe that since X is compact metric and f has shadowing, we can
easily find a sequence 〈Ui〉 of finite open covers satisfying the following properties:

(1) Un+1 witnesses Un shadowing,
(2) {Ui} is cofinal in FOC(X), and
(3) for all U ∈ Un+2, there exists W ∈ Un such that st(U,Un+1) ⊆W .
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This is easily accomplished by taking U0 = {X}, and inductively letting Un+1

be a cover witnessing Un-shadowing with mesh less than one third the Lebesgue
number of the cover Un. Conditions (1) and (2) are immediately met. To verify
that condition (3) is satisfied, fix n ∈ N and U ∈ Un+2. Then U is a subset of V
for some V ∈ Un+1, and so st(U,Un+1) is a subset of st(V,Un+1). But the diameter
of st(V,Un+1) is at most three times the mesh of Un+1, and hence has diameter
less than the Lebesgue number for Un. Hence there is some W ∈ Un for which
W ⊇ st(V,Un+1) ⊇ st(V,Un+1) as required.

Let f : X → X and covers 〈Ui〉 be as stated. For each U ∈ Un+2, fix W (U) ∈
Un with st(U,Un+1) ⊆ W (U), and define w : PO(Un+2) →

∏
Un by w(〈Uj〉) =

〈W (Uj)〉. Note that, as this is a single letter substitution map on a shift space, it
is a continuous map and commutes with the shift map by definition.

We claim that w(PO(Un+2)) is a subset of O(Un). Indeed, let 〈Uj〉 ∈ PO(Un+2)
and 〈xj〉 a pseudo-orbit with this pattern. Since Un+2 witnesses Un+1-shadowing,
there exists z ∈ X and sequence 〈Vj〉 ∈ O(Un+1) with f j(z), xj ∈ Vj . In particular,
for any such z and choices of 〈Vj〉, Vj ⊆ st(Uj ,Un+1) ⊆W (Uj). Indeed, this estab-
lishes that 〈W (Uj)〉 ∈ O(Un). It should be noted that while w is not necessarily
surjective, for every x ∈ X, there is some 〈Uj〉 in w(PO(Un+2)) with f j(x) ∈ Uj
for all j. We can observe this by noting that 〈f j(x)〉 is itself a Un+2-pseudo-orbit,
and in particular, we have f j(x) ∈ W (Uj), and so 〈W (Uj)〉 is a Un orbit pattern
for x.

Since O(Un) ⊆ PO(Un), we have the following diagram (Figure 2).

O(U0) O(U1) O(U2) O(U3) O(U4)

PO(U0) PO(U1) PO(U2) PO(U3) PO(U4)

w w

Figure 2. Diagram for the proof of Theorem 20

So, while the ‘natural’ map from PO(Un+2) is set-valued, the composition of
inclusion and w gives a single-valued continuous map from O(Un+2) to O(Un), and
by reversing the order of composition, from PO(Un+2) to PO(Un). We will denote
these maps by ι′. Figure 3 then establishes the existence of a map w∗ from the
inverse limit of the pseudo-orbit spaces ti the inverse limit of the orbit spaces which
commutes with the induced maps σ∗.

All that remains is to establish that the inverse limit of orbit space is a factor
of the system (f,X) and that the composition of this factor map with the map
w∗ is a surjection. For the former, Let φ : lim

←−
{ι′,O(U2i)} → X be given by

φ〈ui〉 =
⋂
π0(ui). Note that, by construction, πk(ui+1) ⊆ πk(ui) for all k and i,

so in particular φ(〈ui〉) is a nested intersection of the closures of elements of the
open covers, and hence is well-defined. That φ is continuous and commutes with σ∗
follows from similar reasoning as Theorem 12 and Corollary 14. That φ is surjective
follows from the same logic as Theorem 12–observe that that for all x ∈ X, and
all k, there exists a nonempty subset O2k(x) of U2k-orbit patterns for x in O(U2k),
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O(U0) O(U2) O(U4) O(U6) · · ·lim
←−
{ι′,O(U2i)} ι′ ι′ ι′ ι′

PO(U0) PO(U2) PO(U4) PO(U6) · · ·lim
←−
{ι′,PO(Ui)} ι′ ι′ ι′ ι′

w w w w
w∗ '

Figure 3. Diagram for the proof of Theorem 20

and that
O(x) =

⋂
π−1

2k (O2k)
⋂

lim
←−
{ι′,O(U2i)}

is nonempty and satisfies φ(O(x)) = {x}. This same observation coupled with the
fact that O(U2k) is mapped into PO(U2k) by inclusion demonstrates that φ ◦w∗ is
indeed surjective, and is thus a factor map.

�

Clearly, the existence of the sequence of covers satisfying conditions (2) and (3)
in this proof is a strong condition. In particular, this implies that there is such a
cofinal sequence in FOC(X), which in turn implies that the space X is metrizable.

While it seems that this might be straightforward to generalize, a direct general-
ization of this argument fails due to the complexity of the partial order on the class
of open covers of a general compact Hausdorff space. In particular, given any pair
U and V of finite open covers of a compact Hausdorff space X, there is some cover
W which mutually star-refines U and V and also a cover T which is star-refined by
both. To follow the argument from before, we would need to be able to establish
maps from W to U and to V as well as maps from U and V into T all of which
respect star-refinement and such that the compositions agree. This is generally not
possible due to the inherent ‘drift’ of stars of sets in covers.

6. Factor maps which preserve shadowing

We have now established that for a metric system to exhibit shadowing, it is
necessary for there to exist an inverse limit of an inverse sequence of shifts of finite
type of which the original system is a factor. However, it is worth noting that this
is by no means sufficient, even with the added hypothesis that the inverse sequence
is an ML inverse sequence. In particular, every sofic shift is a factor of such an
inverse limit, but only those that are shifts of finite type exhibit shadowing.

Example 21. Let X be the subshift of {0, 1}Z consisting of those bi-infinite words
containing at most one 1. The system (σ,X) fails to have shadowing, but is a factor
of the inverse limit of an inverse sequence of shifts of finite type.

Proof. (σ,X) is a standard example of a system which does not have shadow-
ing; it has only one non-constant full orbit, namely the orbit passing through
· · · 0001000 · · · , but uncountably many distinct pseudo-orbits containing the fixed
point 〈0〉. Now let Y be the subshift of {0, 1, 2}Z consisting of those sequences
in which the words 02, 10, 21 and 20 do not appear, i.e. Y is the subshift of all
sequences of the form · · · 0000001222222 · · · along with the constant sequences 〈0〉
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and 〈2〉. Y is a shift of finite type. Then Y is (trivially) an inverse limit of an
ML system of shifts of finite type. However, the map from Y to X induced by
substituting the symbol 0 for 2 witnesses that X is a factor of Y . �

It is then natural to ask which factors of inverse limits of ML inverse systems
consisting of shifts of finite type exhibit shadowing, i.e. is there a class of maps P
such that if (f,X) is a factor by a map in P of an inverse limit of an ML inverse
system of shifts of finite type, then (f,X) has shadowing? Of course, it is clear that
there is such a class, and in fact the class of homeomorphisms have this property,
but we wish to find, if possible, the maximal such class. Towards this end, we define
the following.

Definition 22. Let (f,X) and (g, Y ) be dynamical systems with X and Y compact
Hausdorff spaces. A factor map φ : (f,X) → (g, Y ) lifts pseudo-orbits provided
that for every VX ∈ FOC(X), there exists VY ∈ FOC(Y ) such that if 〈yi〉 is a VY -
pseudo-orbit in Y , then there is a VX -pseudo-orbit 〈xi〉 in X with 〈yi〉 = 〈φ(xi)〉.

Theorem 23. Let (f,X) and (g, Y ) be dynamical systems with X and Y compact
Hausdorff. If (f,X) has shadowing and φ : (f,X) → (g, Y ) is a factor map that
lifts pseudo-orbits, then (g, Y ) has shadowing.

Proof. Fix an open cover UY ∈ FOC(Y ), and let UX ∈ FOC(X) such that φ(UX)
refines UY . Since (f,X) has shadowing, let VX ∈ FOC(X) witness shadowing with
respect to UX .

Since φ lifts pseudo-orbits, let VY witness this with respect to VX . Finally, let
〈yi〉 be a VY -pseudo-orbit.

Pick 〈xi〉 to be a VX -pseudo-orbit with 〈φ(xi)〉 = 〈yi〉. As every VX -pseudo-orbit
is UX -shadowed, fix zX ∈ X to witness this and let zY = φ(zX). It then follows that
for each i, we have φi(zX), φ(xi) ∈ φ(UX,i) for some Ui ∈ UX . As φ(UX) refines
UY , it follows that there exists UY,i ∈ UY with φi(zY ), yi ∈ φ(UY,i), i.e. zY = φ(zX)
UY -shadows 〈yi〉. �

Notwithstanding Theorem 23, a more general concept of lifting pseudo-orbits
provides a much sharper insight into the relation between shadowing and shifts of
finite type in compact metric systems.

Definition 24. Let (f,X) and (g, Y ) be dynamical systems with X and Y compact
Hausdorff spaces. A factor map φ : (f,X) → (g, Y ) almost lifts pseudo-orbits (or
f is an ALP map) provided that for every VX ∈ FOC(X) and WY ∈ FOC(Y ),
there exists VY ∈ FOC(Y ) such that if 〈yi〉 is a VY -pseudo-orbit in Y , then there
is a VX -pseudo-orbit 〈xi〉 in X such that for each i ∈ N there exists Wi ∈ WY with
φ(xi), yi ∈Wi.

Theorem 25. Let (f,X) and (g, Y ) be dynamical systems with X and Y com-
pact Hausdorff and let φ : (f,X) → (g, Y ) be a factor map. Then the following
statements hold:

(1) if (f,X) has shadowing and φ is an ALP map, then (g, Y ) has shadowing,
and

(2) if (g, Y ) has shadowing then φ is an ALP map.

Proof. First, we prove statement (1). Let (f,X) have shadowing and let φ be an
ALP map. Fix an open cover UY ∈ FOC(Y ). Let WY ∈ FOC(Y ) such that if
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W,W ′ ∈ WY with W ∩W ′ 6= ∅, then there exists U ∈ UY with W ∪W ′ ⊆ U , and
let UX ∈ FOC(X) such that φ(UX) refines WY . Since (f,X) has shadowing, let
VX ∈ FOC(X) witness shadowing with respect to UX .

Since φ is ALP, let VY witness this with respect to WY and VX . Finally, let 〈yi〉
be a VY -pseudo-orbit.

Pick 〈xi〉 to be a VX -pseudo-orbit so that 〈φ(xi)〉 WY -shadows 〈yi〉. As every
VX -pseudo-orbit is UX -shadowed, fix zX ∈ X to witness this and let zY = φ(zX).
It then follows that for each i, we have φi(zX), φ(xi) ∈ φ(UX,i) for some Ui ∈ UX .
As φ(UX) refines WY , it follows that there exists Wi ∈ WY with φi(zY ), φ(xi) ∈
Wi. Additionally, as pseudo-orbits are almost lifted, there exists W ′i ∈ WY with
φ(xi), yi ∈ W ′i . In particular, φ(xi) ∈ Wi ∩ W ′i , so we have that there exists
UY,i ∈ UY with φi(zY ), φ(xi), yi ∈Wi ∪W ′i ⊆ UY,i ∈ UY , i.e zY UY -shadows 〈yi〉.

Now, to prove statement (2), assume that (g, Y ) has shadowing. let VX ∈
FOC(X) and WY ∈ FOC(Y ). Let VY ∈ FOC(Y ) witness shadowing with respect
to WY . Now, let 〈yi〉 be a VY pseudo-orbit in Y . Then there is some z ∈ Y
with z WY -shadowing 〈yi〉. Now, choose x ∈ φ−1(z) and observe that 〈f i(x)〉 is
a VX -pseudo-orbit (as it is in fact an orbit), and φ(f i(x)) = gi(z), so there exists
Wi ∈ WY with φ(f i(z)), yi ∈Wi (as given by the shadowing pattern of z and 〈yi〉).
Thus φ is an ALP map. �

One consequence of the above is that the conjugacies (factor maps) in Theorems
18 and 20 are ALP maps. This is not terribly surprising in the case of Theorem
18, as the map in question is a homeomorphism, but in the case of Theorem 20,
this is interesting, and allows us to refine the characterization. It should be also be
noted that, as a result of this theorem, we see that the factor maps constructed by
Bowen in [6] are ALP.

Theorem 26. Let X be a compact Hausdorff space. The map f : X → X has
shadowing if (f,X) lifts via a map which is ALP to the inverse limit of an ML
inverse system of shifts of finite type.

Proof. This follows immediately from Theorem 8 and Theorem 25. �

In the metric case, we can say a bit more, but first we first translate the notion of
almost lifting pseudo-orbits from the language of covers into the language of metric
spaces. This is not completely necessary, but allows for a different perspective on
the property. As this is a direct translation and application of Theorem 20 and
Theorem 26, we state the following results without proof.

Lemma 27. Let (f,X) and (g, Y ) be dynamical systems with X and Y compact
metric spaces. A factor map φ : (f,X)→ (g, Y ) is an ALP map if and only if for
all ε > 0 and η > 0, there exists δ > 0 such that if 〈yi〉 is a δ-pseudo-orbit in Y ,
there exists an η-pseudo-orbit 〈xi〉 in X with d(φ(xi), yi) < ε.

Corollary 28. Let X be a compact metric space. The map f : X → X has
shadowing only if (f,X) is a factor of an inverse limit of a sequence of shifts of
finite type by a map which is ALP. Additionally, f : X → X has shadowing if
(f,X) lifts via a map which is ALP to the inverse limit of an ML sequence of shifts
of finite type.

Of course, it would be of significant benefit if ALP maps had an alternate char-
acterization. In particular, it is clear that homeomorphisms and covering maps lift
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pseudo-orbits. However, there are maps which are neither covering maps nor home-
morphisms which almost lift pseudo-orbits, in particular, the factor maps given in
Theorem 20 are not typically open, much less covering maps.
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