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Abstract. We show that shadowing is a generic property for continuous maps

on dendrites.

1. Introduction. One of the most well-studied properties in the theory of topo-
logical dynamical systems is shadowing or the pseudo-orbit tracing property that
was introduced independently by Anosov, [1], and Bowen, [2]. Let (X, d) be a com-
pact metric space and f : X → X continuous. For δ > 0, a sequence 〈xi〉i∈N is
a δ-pseudo-orbit provided d(f(xi), xi+1) < δ for all i. For ε > 0, a point z ∈ X
is said to ε-shadow a pseudo-orbit 〈xi〉i∈N provided d(f i(z), xi) < ε for all i. We
say that the map f has shadowing or the pseudo-orbit tracing property if for ev-
ery ε > 0 there is a δ > 0 such that every δ-pseudo-orbit is ε-shadowed by some
point. Computer approximations of dynamical systems by necessity usually deal
with pseudo-orbits rather than real orbits. If a system has shadowing, then we can
be sure that every pseudo-orbit a computer generates is followed by an actual orbit.

Given a compact metric space (X, d), let C(X) denote the space of continuous
self-maps of X, with the topology induced by the supremum metric

ρ(f, g) = max
x∈X

d(f(x), g(x)).

This metric is complete on C(X). The topology it induces coincides with both the
compact-open topology and the topology of uniform convergence.

For our purposes, a dynamical system consists of a compact metric space X and
a continuous map f : X → X. If X is given in advance, then we may think of a
dynamical system simply as a point of C(X). It is in this sense that we speak of
dynamical properties as being “generic” for a space X: it means that the set of all
f ∈ C(X) with that property is co-meager.

The question of the genericity of shadowing has been studied for some time, but
usually in the context of the space of homeomorphisms on a manifold with the C0
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topology. Yano showed that shadowing is generic for homeomorphisms of the unit
circle, [12], and Odani proved that shadowing is generic for homeomorphisms on
smooth manifolds with dimension at most three, [10]. Pilyugin and Plamenevska
extended this to homeomorphisms on compact manifolds without boundary but
with a handle decomposition, [11].

In contrast to these results we consider the space of all continuous functions,
rather than just homeomorphisms, on a dendrite D. A dendrite is a compact, locally
connected, uniquely arcwise connected, metric space; roughly, it is a compact tree-
like space, where the tree may branch infinitely often, or even have a dense set of
branching points. These spaces arise frequently in the study of Julia sets on the
complex plane, [3]. Our main theorem is that the shadowing property is generic for
continuous maps on dendrites:

Main Theorem. Let D be a dendrite and let C(D) denote the space of all contin-
uous self-maps of D. The set of all f : D → D with the shadowing property is a
co-meager subset of C(D).

The analogous result was established by Mizera for continuous maps on [0, 1] and
the unit circle, [9]. Recently this type of result was also established for compact
manifolds by Mazur and Oprocha, [6], and also for surjections on manifolds that
admit a decomposition by Kościelniak, Mazur, Oprocha, and Pilarczyk, [8]. Using
different techniques, Bernardes and Darji, [4], established that shadowing is generic
for homeomorphisms of the Cantor space. See also [5] and [7] for further results
along these lines. l We prove our main result in Section 3 after developing the
necessary preliminaries in Section 2.

2. Preliminaries. Let (X, d) be a compact metric space and f : X → X a contin-
uous map. For x ∈ X, the orbit of x is the sequence 〈f i(x)〉i∈N.

For ε > 0, an ε-pseudo-orbit is a sequence 〈xi〉i∈N satisfying d(f(xi), xi+1) < ε for
all i ∈ N. A map f : X → X has shadowing provided that for all ε > 0 there exists
a δ > 0 such that for every δ-pseudo-orbit 〈xi〉i∈N there exists an orbit 〈f i(z)〉i∈N
satisfying

d(xi, f
i(z)) < ε.

We say that the orbit 〈f i(z)〉i∈N ε-shadows the δ-pseudo-orbit 〈xi〉i∈N.
As mentioned above, dendrites are uniquely arcwise connected. Without loss of

generality, the metric d on a dendrite D can be assumed to be a “taxicab metric”:
i.e., given points x, y, z ∈ D, if y belongs to the arc from x to z, then d(x, z) =
d(x, y) + d(y, z).

A dendrite D has two special types of points. An endpoint is a point x ∈ D such
that D \ {x} is connected. A branchpoint is a point x ∈ D such that D \ {x} has
more than two components. In a typical dendrite, both the set of endpoints and
the set of branchpoints may be dense. If x, y ∈ D then the unique arc A between x
and y is denoted by [x, y], and we denote [x, y] \ {x, y} by (x, y).

If x, y are points of some dendrite D, then any z ∈ (x, y) is not an endpoint, and
in particular D\{z} is disconnected. This implies that every connected subset of D
is uniquely arcwise connected. We will use this fact frequently, and often without
comment, in the next section.

Suppose D is a dendrite and fix x, y ∈ D. Suppose that g(0) = x and g(1) = y,
but g is not defined on (0, 1). In this situation, g may be extended linearly between
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0 and 1, meaning that for p ∈ (0, 1), we put g(p) = z, where z is the unique point
of [x, y] such that

d(x, z) = p · d(x, y).

If K is a compact, connected subset of a dendrite D and x ∈ D, then there is
a unique point πK(x) ∈ K that is the closest to x. We call the arc [x, πK(x)] the
shortest arc from x to K. Notice that K ∩ [x, πK(x)] = {πK(x)}. Also notice that
if x ∈ K then πK(x) = x and the shortest arc from x to K is the degenerate arc
{x}. Extending this a bit further, observe that if K1 and K2 are compact connected
subsets of a dendrite D then there is a unique shortest arc from K1 to K2.

Let U = {U1, U2, . . . , Uk} be an open cover of a dendrite D. We say that U is
taut provided Ui \

⋃
j 6=i Uj has non-empty interior for every i ≤ k. Clearly every

open cover of D can be refined to a taut open cover.

3. Maps of dendrites. In this section we prove our main theorem. Most of the
proof will be broken up into a sequence of smaller propositions and lemmas.

Let D be a dendrite. The strategy of the proof is as follows. For each n ∈ N, let
Rn denote the set of all f ∈ C(D) such that for some δ > 0, every δ-pseudo-orbit
is 1

n -shadowed. We will show that each Rn contains a dense open set. This implies
that the set R =

⋂
n∈NRn contains a dense Gδ-set in C(D). The functions in R

are precisely those with shadowing, so this proves the theorem.
The difficulty lies in proving that each Rn contains a dense open subset of C(D).

To do this, we will find, for every n ∈ N, every f ∈ C(D), and every ε > 0, a map
g ∈ Bε(f) and a γ > 0 such that

1. Bγ(g) ⊆ Bε(f),
2. if h ∈ Bγ(g) then every γ-pseudo-orbit of h is 1

n -shadowed, therefore
3. Bγ(g) ⊆ Rn.

It follows that the interior of Rn is dense in C(D).
The definition of g takes place in four stages. At each stage we work with a

different subspace of D:

A ⊆ S ⊆ T ⊆ D.

These spaces will be increasingly accurate, and increasingly complex, approxima-
tions to D.

The smallest space A is just a disjoint collection of arcs. Topologically, A is a
very crude approximation to D; however, in a sense to be made precise soon, we will
ensure that g|A contains enough information about g to capture all possible patterns
of γ-pseudo-orbits. The next subspace S is a union of disjoint trees: roughly, each
piece of S connects some collection of the arcs comprising A that we wish to consider
“close” to each other. T is a single tree patching together all the various smaller
trees comprising S, and giving a very good approximation to the structure of D.

Our plan is to define the map g first on A, and then to extend it in turn to S, to
T , and finally to all of D. After defining A below, we will define g|A (which we call
g0) before defining S or T . Similarly, the definition of g|S (which we call g1) will
precede our definition of T , and the definition of g|T (which we call g2) will precede
our definition of g. Hopefully, this process of extending g piece by piece will give
the reader a sense of where the proof is headed as it unfolds.

Fix n ∈ N. Before defining A, let us make precise the idea that a given f ∈ C(D)
imposes certain restrictions on the possible paths of a pseudo-orbit.
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Let 0 < ε < 1
n and let U = {U1, . . . , Uk} be a taut open cover of D such that

max
1≤i≤k

{diam(Ui),diam(f (Ui))} <
ε

2
,

and such that each Ui is connected. For each 1 ≤ i ≤ k let

φ(i) =
{
m : f

(
U i
)
∩ Um 6= ∅

}
.

This generates a directed graph Φ on the vertices {1, . . . , k}, where i is connected
to m if and only if m ∈ φ(i). Walks through Φ correspond to possible patterns for
δ-pseudo-orbits when δ is sufficiently small. We will construct g so that it has the
same pseudo-orbit structure as f (i.e., it imposes the same graph Φ on U), but so
that it is also capable of shadowing each of these pseudo-orbits.

Lemma 3.1. For each i ≤ k,
⋃
m∈φ(i) Um is connected.

Proof. Let i ≤ k. For each m ∈ φ(i), consider the set Wm = Um ∪
(
Um ∩ f

(
U i
))

and observe that

f
(
Ui
)
∪

⋃
m∈φ(i)

Wm = f
(
Ui
)
∪

⋃
m∈φ(i)

Um =
⋃

m∈φ(i)

Um.

By assumption, Ui is connected, which implies f
(
U i
)

is also connected. Each

Wm is connected (because Um is connected and Um ⊆ Wm ⊆ Um) and meets
f
(
U i
)

(because m ∈ φ(i)). It follows that f
(
U i
)
∪
⋃
m∈φ(i)Wm =

⋃
m∈φ(i) Um is

connected.

We now proceed to the definition of A. For each 1 ≤ i ≤ k, order

φ(i) = {m1 < · · · < m`i}.
For each m ∈ φ(i) let Ai,m be a non-degenerate arc in the interior of Ui \

⋃
j 6=i Uj ,

or, equivalently, in Ui \
⋃
j 6=i U j , such that

1.
⋃
m∈φ(i)Ai,m is contained in a single connected component of Ui \

⋃
j 6=i U j ,

2. no Ai,m contains an endpoint of D, and
3. the collection {Ai,m : 1 ≤ i ≤ k and m ∈ φ(i)} is pairwise disjoint.

Let Vi denote the connected component of Ui \
⋃
j 6=i U j that contains

⋃
m∈φ(i)Ai,m.

Let A =
⋃
i≤k
⋃
m∈φ(i)Ai,m.

Next we define g0 : A → D (recall that eventually we will have g|A = g0).
Roughly, we will define a collection of maps gi,m, for i ≤ k and m ∈ φ(i), that will
map each arc Ai,m across every arc Am,j with j ∈ φ(m). Thus for each possible
path through Φ, we will have a sequence of arcs following that path.

The following lemma asserts that we can do exactly this, and moreover we can
do it in such a way that this property is robust under small perturbations.

Lemma 3.2. Let V be an open connected subset of the dendrite D. Let A1, A2, . . . , A`
be pairwise disjoint arcs in V such that no endpoint of any Ai is an endpoint of D.
There exists a map g : [0, 1] → D and δ > 0 such that Ai ⊆ g([0, 1]) ⊆ V for all
i ≤ `, and for all maps h : [0, 1] → D with ρ(g, h) < δ, Ai ⊆ h([0, 1]) ⊆ V for all
i ≤ `.

Proof. Choose points,

q1, . . . q2` ∈ V \

(⋃̀
i=1

Ai

)
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such that Ai ⊆ [q2i−1, q2i] for 1 ≤ i ≤ `, and such that none of the qi’s are endpoints
of D. Define a map g from [0, 1] to D by first mapping

i− 1

2`− 1
→ qi

for 0 ≤ i ≤ `, and then extending linearly between these points.
Because V is connected, g([0, 1]) ⊆ V . Let δ > 0 be chosen so small that

1. for every y ∈ g([0, 1]), Bδ(y) ⊆ V , and

2. Bδ(qi) ∩
⋃`
j=1Aj = ∅ for every i ≤ 2`.

Let h : [0, 1]→ D such that

ρ(g, h) < δ.

Let ri = h
(
i−1
2`−1

)
for each 1 ≤ i ≤ 2`: then d(ri, qi) < δ, so that Ai ⊆ [r2i−1, r2i],

for each 1 ≤ i ≤ `. Thus h([0, 1]) ⊇ Ai for all 1 ≤ i ≤ `. Furthermore, h([0, 1]) ⊆
Bδ(g([0, 1])) ⊆ V .

Using Lemma 3.2, we may find, for each 1 ≤ i ≤ k and each m ∈ φ(i), some
gi,m : Ai,m → Vm and some δi,m > 0 such that

1. gi,m(Ai,m) ⊇
⋃
j∈φ(m)Am,j , and

2. if h : Ai,m → D is continuous with ρ(gi,m, h) < δi,m then⋃
j∈φ(m)

Am,j ⊆ h(Ai,m) ⊆ Vm.

Define g0 : A → D such that g0|Ai,m = gi,m for each i ≤ k and m ∈ φ(i); this is
well-defined because the gi,m have pairwise disjoint domains. Let

δ = min{δi,m : 1 ≤ i ≤ k, m ∈ φ(i)}.
For every walk through Φ, there is a point x ∈ A whose g0-orbit follows it.

Since walks through Φ are meant to capture all possible pseudo-orbit patterns, this
feature of g0 is what will ensure g has shadowing. In other words, we plan to ensure
that every pseudo-orbit in (D, g) is shadowed already by a point in (A, g0). In order
for this to work, the extension of g0 to D must not introduce any new pseudo-orbit
patterns. Thus, let us proceed to extend g0 carefully.

For each 1 ≤ i ≤ k, we now construct an arcwise connected tree Si ⊆ Ui con-
taining all of the Ai,m. These Si will be the components of S. Fix 1 ≤ i ≤ k. Si
is constructed recursively in `i steps. Roughly, we are piecing together a tree from
the Ai,m, and each step of the recursion consists of attaching another one of the
Ai,m to the part of the tree constructed so far.

To begin, let Di
1 =

⋃
m∈φ(i)Ai,m. For the recursive step, suppose we have con-

structed Di
j−1 for some 1 < j ≤ `i, and that all of the Ai,mj′ , j

′ < j, lie in a single

arc component of Di
j−1, say Bj−1. If Ai,mj

⊆ Bj−1, then set Cij = ∅. Otherwise,

let Cij = [c−i,j , c
+
i,j ] be the shortest arc between Bj−1 and Ai,mj

, with c−i,j ∈ Bj−1
and c+i,j ∈ Ai,mj

. Let

Di
j = Di

j−1 ∪ Cij .
Finally, let Si = Di

`i
and S =

⋃
i≤k Si.

Lemma 3.3. For each 1 ≤ i ≤ k,

1. Si ⊆ Vi ⊆ Ui.
2. for each mj ∈ φ(i), if Cij 6= ∅ then Cij ∩Di

j−1 = {c−i,j , c
+
i,j}.
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Proof. Because Vi is uniquely arcwise connected, an easy induction shows that
Di
j ⊆ Vi for all j ≤ `i. This proves (1), and (2) follows immediately from the above

construction.

Now that S is defined, our next goal is to extend g0 from A to S. Fix Si with
1 ≤ i ≤ k. Following the recursive definition of Si, we will provide a recursive
definition of g1 on Si.

To begin, set g1 equal to g0 on Di
1 = A ∩ Si. For the recursive step, suppose g1

has been defined already on Di
j−1 for some j ≤ `i, but has not yet been defined on

any point of Si \Di
j−1. If Cij = ∅ then there is nothing to do. Otherwise, by part

(2) of Lemma 3.3, g1 is defined on c−i,j and c+i,j but on no other points of Cij . In this

case we define g1 on (c−i,j , c
+
i,j) by extending it linearly between c−i,j and c+i,j .

This defines g1 on Si for each i ≤ k. The Si are pairwise disjoint by part (1) of
Lemma 3.3, so we have defined g1 on S.

Proposition 1. For each 1 ≤ i ≤ k,

g1(Si) ⊆
⋃

m∈φ(i)

Um.

Proof. We prove by induction on j that g1(Di
j) ⊆

⋃
m∈φ(i) Um for every j ≤ `i.

This is sufficient, because Si = Di
`i

.

For the base case j = 1, we have Di
1 ∩ Si =

⋃
m∈φ(i)Ai,m. For each m ∈ φ(i),

g1(Ai,m) = g0(Ai,m) ⊆ Vm ⊆ Um,

so that g1(Di
1) ⊆

⋃
m∈φ(i) Um as desired.

For the inductive step, assume g1(Di
j−1) ⊆

⋃
m∈φ(i) Um. If Cij = ∅, then there

is nothing to prove. If not, then, by part (2) of Lemma 3.3 and the inductive
hypothesis,

g1(c−i,j), g1(c+i,j) ∈ g1(Di
j−1) ⊆

⋃
m∈φ(i)

Um.

By Lemma 3.1 and the fact that D is uniquely arcwise connected,

[g1(c−i,j), g1(c+i,j)] ⊆
⋃

m∈φ(i)

Um.

By the definition of g1,

g1
(
Cij
)
⊆

⋃
m∈φ(i)

Um,

so that g1(Di
j) = g1(Di

j−1) ∪ g1(Cij) ⊆
⋃
m∈φ(i) Um as desired.

Next we construct the tree T by connecting all the various components of S. The
definition is recursive, and is essentially identical to the definition of Si from A∩Vi.

To begin, let F1 = S. For the recursive step, suppose we have constructed Fi−1
for some 1 < i ≤ k, and that all of the Sj , j < i, lie in a single arc component of
Fi−1, say Gi−1. If Si ⊆ Gi−1, then set Ei = ∅. Otherwise, let Ei = [e−i , e

+
i ] be the

shortest arc between Gi−1 and Si, with e−i ∈ Gi−1 and e+i ∈ Si. Let

Fi = Fi−1 ∪ Ei.

Finally, let T = Fk.
The following lemmas will aid us in defining g2 : T → D.
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Lemma 3.4. For each 1 ≤ i ≤ k, if Ei 6= ∅ then Ei ∩ Fi−1 = {e−i , e
+
i }.

Proof. This follows immediately from the above construction.

Lemma 3.5. There is a finite Z ⊆ T \ S such that, for every 1 ≤ i ≤ k, if Ki

denotes the connected component of T \ Z containing Si, then

1. Ki ⊆ Vi, and
2. Ki \ Si is a finite union of pairwise disjoint intervals, each of the form (s, z),

with s ∈ Si and z ∈ Z.

The idea behind Lemma 3.5 is that we may find a finite set Z that fences off
each Si from the rest of T . A picture of (one possible version of) T and Z is shown
below.

S1

S2

S3

S4

S5

S6

Proof of Lemma 3.5. We will construct the set Z by recursion. First, pick η > 0
small enough that, for every 1 ≤ i ≤ k,

1. Bη(Si) ⊆ Vi,
2. for every 1 ≤ j ≤ k, if Ej ∩ Si = ∅, then Bη(Si) ∩ Ej = ∅.
To begin, let Z0 = ∅. For the recursive step, we have two cases. If Ei = ∅, then

do nothing: set Zi = Zi−1. Otherwise, we have Ei = [e−i , e
+
i ] for some e−i ∈ Fi−1

and e+i ∈ Si. In this case, let z+i be the unique point of Ei such that d(z+i , e
+
i ) = η

(uniqueness follows from the fact that we are using a taxicab metric on D). If
e−i /∈ S, then let Zi = Zi−1 ∪ {z+i }. If e−i ∈ S, then let z−i be the unique point of
Ei such that d(e−i , z

−
i ) = η, and let Zi = Zi−1 ∪ {z+i , z

−
i }. Finally, let Z = Zk.

To prove that Z has the required properties, we use induction. Specifically, by
induction on j, we show that, if Kj

i denotes the connected component of Fj \ Zj
containing Si then, for every 1 ≤ i ≤ k,

1. Kj
i ⊆ Vi, and

2. Kj
i \ Si is a finite union of pairwise disjoint intervals, each of the form (s, z),

with s ∈ Si and z ∈ Z.

The base case is true by part (1) of Lemma 3.3. The inductive step follows easily
from Lemma 3.4 and our choice of z±i . As Fk = T , this completes the proof of the
lemma.
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We are now ready to define g2 : T → D. For each 1 ≤ i ≤ k, let Ki denote the
connected component of Si in T \ Z. The definition of g2 is piecewise, where we
view T as divided into three pieces: S, T \

⋃
i≤kKi, and

⋃
i≤k(Ki \ Si).

If x ∈ S, let g2(x) = g1(x). If x ∈ T \
⋃
i≤kKi, let g2(x) = f(x). If x ∈⋃

i≤k(Ki \ Si), then x ∈ (s, z) where z ∈ Z and s is the point in Si that is closest

to z. On each such interval, define g2 on (s, z) by extending it linearly between s
and z (where it has already been defined).

Proposition 2. For each 1 ≤ i ≤ n,

g2
(
U i ∩ T

)
⊆

⋃
m∈φ(i)

Um.

Proof. Let x ∈ U i ∩ T . We have three cases:
If x ∈ Si, then g2(x) = g1(x), and g1(x) ∈

⋃
m∈φ(i) Um by Proposition 1.

If x is in T \
⋃
i≤kKi, then g2(x) = f(x). There is some Um ∈ U containing f(x),

and m ∈ φ(i) by the definition of φ. Thus g2(x) ∈
⋃
m∈φ(i) Um.

If x ∈
⋃
i≤k(Ki \ Si), then x is contained in an interval of the form (s, z), where

s ∈ S and z ∈ Z. By definition, g2(x) ∈ [g2(s), g2(z)], and it is already established
that g2(s) and g2(z) are in

⋃
m∈φ(i) Um. By Lemma 3.1, g2(x) ∈

⋃
m∈φ(i) Um as

well.

Finally, we are ready to define g : D → D. Define g so that g|T = g2, and if
x ∈ D \ T then g(x) = g2 ◦ πT (x).

It remains to show that this map g has the required properties. First we check
that g imposes the same pseudo-orbit pattern on U that f does:

Proposition 3. For each 1 ≤ i ≤ k, g
(
U i
)
⊆
⋃
m∈φ(i) Um.

Proof. Let x ∈ U i, and let [x, t] be the shortest path from x to t, where t = πT (x).
Because U i is arcwise connected, and because D is uniquely arcwise connected, we
must have [x, t] ⊆ U i. Then g(x) = g2(t) ∈

⋃
m∈φ(i) Um by Proposition 2.

Next we check that g ∈ Bε(f):

Proposition 4. ρ(f, g) < ε.

Proof. Let x ∈ D, and fix 1 ≤ i ≤ k with x ∈ Ui. By Proposition 3 there is some
m ∈ φ(i) such that g(x) ∈ Um. Furthermore, f(x) ∈ f(Ui) and f

(
U i
)
∩ Um 6= ∅.

By our choice of the cover U ,

d(f(x), g(x)) ≤ diam
(
f
(
U i
))

+ diam
(
Um
)
≤ ε.

As x was arbitrary, it follows that ρ(f, g) < ε.

Next, as promised, we find some γ > 0 such that

1. Bγ(g) ⊆ Bε(f);
2. if h ∈ Bγ(g) then every γ pseudo-orbit of h is 1

n -shadowed; therefore
3. Bγ(g) ⊆ Rn.

Fix 1 ≤ i ≤ k. Because

g
(
U i
)
⊆

⋃
m∈φ(i)

Um
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and g
(
U i
)

is compact, there is some λi > 0 such that for every x ∈ U i,

Bλi
(g(x)) ⊆

⋃
m∈φ(i)

Um.

Let λ = min{λi : 1 ≤ i ≤ k}, and let

γ = min

{
ε− ρ(f, g) ,

λ

2
, δ

}
.

Because γ ≤ ε − ρ(f, g), we automatically have Bγ(g) ⊆ Bε(f). It remains to
show that for every h ∈ Bγ(g), every γ-pseudo-orbit of h is 1

n -shadowed by an orbit
of h.

Lemma 3.6. If h ∈ Bγ(g), then, for every 1 ≤ i ≤ k,

1. h(Ai,m) ⊇
⋃
j∈φ(m)Am,j for every m ∈ φ(i).

2. h
(
U i
)
⊆
⋃
m∈φ(i) Um.

Proof. (1) If ρ(g, h) < γ, then ρ(g|A, h|A) < δ. But g|A = g0, and by our choice of
g0 and δ, ρ(g0, h|A) < δ implies h(Ai,m) = h|A(Ai,m) ⊇

⋃
j∈φ(m)Am,j .

(2) Suppose ρ(g, h) < γ and let x ∈ U i. We have d(g(x), h(x)) < γ ≤ λ
2 , so that

h(x) ∈ Bλ(g(x)) ⊆
⋃
m∈φ(i) Um by our choice of λ.

We may interpret the previous lemma as asserting that for every h ∈ Bγ(g), for
any walk through Φ there is a sequence of arcs that, when acted on by h, follow
that walk through Φ. The next lemma asserts formally that any γ-pseudo-orbit of
h is described by a walk through Φ:

Lemma 3.7. Suppose h ∈ Bγ(g), and suppose 〈xj〉 is a γ-pseudo-orbit for h. If
xj ∈ Ui, then xj+1 ∈

⋃
m∈φ(i) Um.

Proof. Fix h ∈ Bγ(g), and a γ-pseudo-orbit for h, 〈xj〉. Suppose xj ∈ Ui. Then

d(h(xj), g(xj)) < γ < λ
2 (because ρ(g, h) < γ), and d(xj+1, h(xj)) < γ < λ

2 (because
〈xj〉 is a γ-pseudo-orbit for h). Thus

xj+1 ∈ Bλ(g(xj)) ⊆
⋃

m∈φ(i)

Um

by our choice of λ.

Putting together the previous two lemmas, we get:

Proposition 5. If h ∈ Bγ(g), then h has the property that every γ-pseudo-orbit is
1
n -shadowed.

Proof. Fix h ∈ Bγ(g), and let 〈xj〉 be a γ-pseudo-orbit for h. For each j, choose
some I(j) ∈ {1, . . . , k} such that xj ∈ UI(j). Thus I : N → {1, . . . , k} is a function
describing the itinerary of our pseudo-orbit. By Lemma 3.7, I(j + 1) ∈ φ(I(j)) for
every j ∈ N; in other words, I describes a walk through Φ. By Lemma 3.6,

h
(
AI(j),I(j+1)

)
⊇ AI(j+1),I(j+2)

for every j ∈ N. From this and the compactness of D, we may conclude that⋂
j∈N

h−j
(
AI(j),I(j+1)

)
6= ∅.
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Thus there is some y ∈ AI(0),I(1) such that

hj(y) ∈ AI(j),I(j+1) ⊆ UI(j)
for every j ∈ N. By the definition of I, xj ∈ UI(j) for all j ∈ N as well. Thus

d(hj(y), xj) < diam(UI(j)) <
ε

2
<

1

n
for every j ∈ N. Hence every γ-pseudo-orbit for h is ε-shadowed.

Corollary 1. The set Rn of all h ∈ C(D) with the property that there is some
γ > 0 such that every γ-pseudo-orbit for h is ε-shadowed has dense interior in (D).

This corollary completes the proof of the theorem: we have showed that the set
Rn described above has dense interior for arbitrary n ∈ N. Thus R =

⋂
n∈NRn is

co-meager in C(D). As R is precisely the set of functions in C(D) with shadowing,
we are done.
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