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ABSTRACT. We show that shadowing is a generic property for continuous maps
on dendrites.

1. Introduction. One of the most well-studied properties in the theory of topo-
logical dynamical systems is shadowing or the pseudo-orbit tracing property that
was introduced independently by Anosov, [1], and Bowen, [2]. Let (X, d) be a com-
pact metric space and f : X — X continuous. For § > 0, a sequence (z;);en is
a 0-pseudo-orbit provided d(f(z;),xi+1) < ¢ for all i. For € > 0, a point z € X
is said to e-shadow a pseudo-orbit (z;);en provided d(fi(z),z;) < ¢ for all i. We
say that the map f has shadowing or the pseudo-orbit tracing property if for ev-
ery € > 0 there is a § > 0 such that every J-pseudo-orbit is e-shadowed by some
point. Computer approximations of dynamical systems by necessity usually deal
with pseudo-orbits rather than real orbits. If a system has shadowing, then we can
be sure that every pseudo-orbit a computer generates is followed by an actual orbit.

Given a compact metric space (X,d), let C(X) denote the space of continuous
self-maps of X, with the topology induced by the supremum metric

p(f:9) = maxd(f(z), g(x)).

re

This metric is complete on C(X). The topology it induces coincides with both the
compact-open topology and the topology of uniform convergence.

For our purposes, a dynamical system consists of a compact metric space X and
a continuous map f : X — X. If X is given in advance, then we may think of a
dynamical system simply as a point of C(X). It is in this sense that we speak of
dynamical properties as being “generic” for a space X: it means that the set of all
f € C(X) with that property is co-meager.

The question of the genericity of shadowing has been studied for some time, but
usually in the context of the space of homeomorphisms on a manifold with the C°
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topology. Yano showed that shadowing is generic for homeomorphisms of the unit
circle, [12], and Odani proved that shadowing is generic for homeomorphisms on
smooth manifolds with dimension at most three, [10]. Pilyugin and Plamenevska
extended this to homeomorphisms on compact manifolds without boundary but
with a handle decomposition, [11].

In contrast to these results we consider the space of all continuous functions,
rather than just homeomorphisms, on a dendrite D. A dendrite is a compact, locally
connected, uniquely arcwise connected, metric space; roughly, it is a compact tree-
like space, where the tree may branch infinitely often, or even have a dense set of
branching points. These spaces arise frequently in the study of Julia sets on the
complex plane, [3]. Our main theorem is that the shadowing property is generic for
continuous maps on dendrites:

Main Theorem. Let D be a dendrite and let C(D) denote the space of all contin-
wous self-maps of D. The set of all f : D — D with the shadowing property is a
co-meager subset of C(D).

The analogous result was established by Mizera for continuous maps on [0, 1] and
the unit circle, [9]. Recently this type of result was also established for compact
manifolds by Mazur and Oprocha, [6], and also for surjections on manifolds that
admit a decomposition by Koscielniak, Mazur, Oprocha, and Pilarczyk, [8]. Using
different techniques, Bernardes and Darji, [4], established that shadowing is generic
for homeomorphisms of the Cantor space. See also [5] and [7] for further results
along these lines. 1 We prove our main result in Section 3 after developing the
necessary preliminaries in Section 2.

2. Preliminaries. Let (X, d) be a compact metric space and f : X — X a contin-
uous map. For 2 € X, the orbit of x is the sequence {f*(x));en.

For € > 0, an e-pseudo-orbit is a sequence (x;);en satisfying d(f(z;), zi+1) < € for
alli € N. Amap f: X — X has shadowing provided that for all € > 0 there exists
a § > 0 such that for every d-pseudo-orbit (z;);en there exists an orbit (f*(z))ien
satisfying

d(zi, f'(2)) <e.

We say that the orbit (f(z))ien e-shadows the d-pseudo-orbit (x;);en.

As mentioned above, dendrites are uniquely arcwise connected. Without loss of
generality, the metric d on a dendrite D can be assumed to be a “taxicab metric”:
i.e., given points z,y,z € D, if y belongs to the arc from x to z, then d(z,z) =
d(z,y) + d(y, 2).

A dendrite D has two special types of points. An endpoint is a point x € D such
that D \ {z} is connected. A branchpoint is a point € D such that D \ {z} has
more than two components. In a typical dendrite, both the set of endpoints and
the set of branchpoints may be dense. If x,y € D then the unique arc A between x
and y is denoted by [x,y], and we denote [x,y] \ {z,y} by (z,y).

If z,y are points of some dendrite D, then any z € (x,y) is not an endpoint, and
in particular D\ {z} is disconnected. This implies that every connected subset of D
is uniquely arcwise connected. We will use this fact frequently, and often without
comment, in the next section.

Suppose D is a dendrite and fix ,y € D. Suppose that g(0) = = and g(1) =y,
but g is not defined on (0, 1). In this situation, g may be extended linearly between
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0 and 1, meaning that for p € (0,1), we put g(p) = 2z, where z is the unique point
of [z,y] such that

d(x,z) = p-d(z,y).

If K is a compact, connected subset of a dendrite D and = € D, then there is
a unique point mx (x) € K that is the closest to z. We call the arc [z, 7k (z)] the
shortest arc from x to K. Notice that K N [z, 7k (x)] = {mx(x)}. Also notice that
if € K then mx(z) = x and the shortest arc from x to K is the degenerate arc
{z}. Extending this a bit further, observe that if K; and K are compact connected
subsets of a dendrite D then there is a unique shortest arc from K; to K.

Let U = {U1,Us,...,Ur} be an open cover of a dendrite D. We say that U is
taut provided U; \ U i U; has non-empty interior for every i < k. Clearly every
open cover of D can be refined to a taut open cover.

3. Maps of dendrites. In this section we prove our main theorem. Most of the
proof will be broken up into a sequence of smaller propositions and lemmas.

Let D be a dendrite. The strategy of the proof is as follows. For each n € N, let
R, denote the set of all f € C(D) such that for some 6 > 0, every J-pseudo-orbit
is %-shadowed. We will show that each R,, contains a dense open set. This implies
that the set R = [,cy Rn contains a dense Gs-set in C(D). The functions in R
are precisely those with shadowing, so this proves the theorem.

The difficulty lies in proving that each R,, contains a dense open subset of C(D).
To do this, we will find, for every n € N, every f € C(D), and every ¢ > 0, a map
g € B:(f) and a v > 0 such that

L. By(g) € B:(f),
2. if h € B,(g) then every ~-pseudo-orbit of h is %—shadowed, therefore

3. By(9) € Ra.

It follows that the interior of R,, is dense in C(D).
The definition of g takes place in four stages. At each stage we work with a
different subspace of D:

ACSCTCD.

These spaces will be increasingly accurate, and increasingly complex, approxima-
tions to D.

The smallest space A is just a disjoint collection of arcs. Topologically, A is a
very crude approximation to D; however, in a sense to be made precise soon, we will
ensure that g| 4 contains enough information about g to capture all possible patterns
of y-pseudo-orbits. The next subspace S is a union of disjoint trees: roughly, each
piece of S connects some collection of the arcs comprising A that we wish to consider
“close” to each other. T is a single tree patching together all the various smaller
trees comprising S, and giving a very good approximation to the structure of D.

Our plan is to define the map ¢ first on A, and then to extend it in turn to S, to
T, and finally to all of D. After defining A below, we will define g|4 (which we call
go) before defining S or T. Similarly, the definition of g|s (which we call g;) will
precede our definition of T', and the definition of g|r (which we call go) will precede
our definition of g. Hopefully, this process of extending g piece by piece will give
the reader a sense of where the proof is headed as it unfolds.

Fix n € N. Before defining A, let us make precise the idea that a given f € C(D)
imposes certain restrictions on the possible paths of a pseudo-orbit.
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Let 0 <e < % and let Y = {Uy,..., U} be a taut open cover of D such that

€

d. i ,d. i Y

masx {diam(U5), diam(f (U3))} < 5

and such that each U; is connected. For each 1 <1¢ < k let

o) = {m: £ (T:) N T #0}.

This generates a directed graph ® on the vertices {1,...,k}, where i is connected
to m if and only if m € ¢(i). Walks through ® correspond to possible patterns for
d-pseudo-orbits when § is sufficiently small. We will construct g so that it has the

same pseudo-orbit structure as f (i.e., it imposes the same graph ® on U), but so
that it is also capable of shadowing each of these pseudo-orbits.

Lemma 3.1. For each i <k, Ume¢(i) U,, is connected.

Proof. Let i < k. For each m € ¢(i), consider the set W,,, = U,,, U (Um Nnf (Ui))
and observe that

fOu U Wa=r@uv J Un= | Un
mE¢(i) meg(i) meg(i)
By assumption, U; is connected, which implies f (Ul) is also connected. Each

W, is connected (because U, is connected and U,, C W,, C Um) and meets
f(U;) (because m € ¢(i)). It follows that f (U;) U Unmeoy Wm = U y Un 18
connected. O

meep(i

We now proceed to the definition of A. For each 1 < i < k, order
P(i) = {m1 <--- <my,}.
For each m € ¢(i) let A;,, be a non-degenerate arc in the interior of U; \ U, Uj,
or, equivalently, in U; \ Uj# U, such that

L. Umeg(s) Ai,m is contained in a single connected component of U; \ U, 4, Uj,

2. no A; ,,, contains an endpoint of D, and

3. the collection {A;,, : 1 <i <k and m € ¢(4)} is pairwise disjoint.
Let V; denote the connected component of U; \|J;_; U; that contains J
Let A= Uzgk Um6¢(1) Ai,m~

Next we define go : A — D (recall that eventually we will have g|la = go).
Roughly, we will define a collection of maps g¢; m, for i <k and m € ¢(i), that will
map each arc A, ,, across every arc A,, ; with j € ¢(m). Thus for each possible
path through ®, we will have a sequence of arcs following that path.

The following lemma asserts that we can do exactly this, and moreover we can
do it in such a way that this property is robust under small perturbations.

j#i meep(i) Aim-

Lemma 3.2. Let V' be an open connected subset of the dendrite D. Let Ay, Ao, ..., Ay
be pairwise disjoint arcs in 'V such that no endpoint of any A; is an endpoint of D.

There exists a map g : [0,1] — D and 6 > 0 such that A; C ¢([0,1]) C V for all

i < ¢, and for all maps h : [0,1] — D with p(g,h) < d§, A; C h([0,1]) C V for all

i</

Proof. Choose points,

¢
qi,---que €V\ <UAZ>

i=1
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such that A; C [g2i—1,¢g2:] for 1 < i < ¢, and such that none of the ¢;’s are endpoints
of D. Define a map ¢ from [0,1] to D by first mapping
1—1
20 —1
for 0 <14 </, and then extending linearly between these points.
Because V is connected, g([0,1]) C V. Let § > 0 be chosen so small that
1. for every y € ¢([0,1]), Bs(y) CV, and
2. Bs(q;) N Uf.:l A; =0 for every i < 20,
Let h : [0,1] — D such that

— 4

p(g, h) <.
Let r; = h (22;11) for each 1 < i < 2¢: then d(r;,¢q;) < §, so that A; C [ro;—1, 7],
for each 1 <4 < ¢. Thus h([0,1]) D A, for all 1 < ¢ < {. Furthermore, h([0,1]) C
Bs(g([0,1])) € V. O

Using Lemma 3.2, we may find, for each 1 < i < k and each m € ¢(i), some
Gim * Aim — Vi, and some §; ,,, > 0 such that

1. gi,m(Ai,m) 2 Uj6¢(m) Am,ja and
2. if h: A; p — D is continuous with p(g; m,h) < §; m then

j€d(m)
Define gy : A — D such that go|a,,, = gi,m for each i < k and m € ¢(4); this is
well-defined because the g; ,,, have pairwise disjoint domains. Let

d=min{d; m 1 <i<k, meo@i}

For every walk through ®, there is a point z € A whose gg-orbit follows it.
Since walks through ® are meant to capture all possible pseudo-orbit patterns, this
feature of gg is what will ensure g has shadowing. In other words, we plan to ensure
that every pseudo-orbit in (D, g) is shadowed already by a point in (A, go). In order
for this to work, the extension of gg to D must not introduce any new pseudo-orbit
patterns. Thus, let us proceed to extend gg carefully.

For each 1 < i < k, we now construct an arcwise connected tree S; C U; con-
taining all of the A; ,,. These S; will be the components of S. Fix 1 <i < k. S;
is constructed recursively in ¢; steps. Roughly, we are piecing together a tree from
the A; ,,, and each step of the recursion consists of attaching another one of the
A; m to the part of the tree constructed so far.

To begin, let Di = Une (3) A; m. For the recursive step, suppose we have con-

structed D§—1 for some 1 < j < ¥;, and that all of the Ai,mj/; j' < j, lie in a single

. Jfl,
let C} = [c;’j,cj’j] be the shortest arc between Bj_1 and A;m;, with ¢;; € Bj_1
and c;fj € Aim,. Let

arc component of D!_,, say B;j_q. If Aim; € Bj_1, then set C’j’: = (. Otherwise,

D;» =D; ;U C’}.
Finally, let .S; = DZ and S = Uigk S;.
Lemma 3.3. For each 1 <i <k,
1. 5; CV; CU;.

2. for each mj € ¢(i), if C} # 0 then C’]’: N D§71 = {c;j,c:j .
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Proof. Because V; is uniquely arcwise connected, an easy induction shows that
D C 'V, for all j < ¢;. This proves (1), and (2) follows immediately from the above
construction. O

Now that S is defined, our next goal is to extend gg from A to S. Fix S; with
1 < i < k. Following the recursive definition of S;, we will provide a recursive
definition of g; on ;.

To begin, set g; equal to go on Dt = AN S;. For the recursive step, suppose g;
has been defined already on D§71 for some j < ¢;, but has not yet been defined on
any point of S; \ D§71~ If C’j’: = () then there is nothing to do. Otherwise, by part
(2) of Lemma 3.3, g1 is defined on ¢; ; and c ; but on no other points of C’ In this
case we define g1 on (c; o Ci ]) by extending 1t linearly between ¢; ; and ct 2P

This defines g; on S; for each ¢ < k. The S; are pairwise disjoint by part (1) of
Lemma 3.3, so we have defined ¢g; on S.

Proposition 1. For each 1 <i <k,

< J Unm
me¢ i)
Proof. We prove by induction on j that gl(D;») C Umeqﬁ(i) U,, for every j < 4.
This is sufficient, because S; = Dj .

For the base case j = 1, we have Di N S; = Unmeai) Aism- For each m € (i),

gl(Ai,m) - gO(Az,m) - Vm - Uma
so that g (D?) C Um€¢(i) U,, as desired.
For the inductive step, assume g;(D}_;) C Unmeg() Um- If C? = 0, then there

is nothing to prove. If not, then, by part (2) of Lemma 3.3 and the inductive
hypothesis,

ale ) o) eaD e | Un
'm€¢(z)
By Lemma 3.1 and the fact that D is uniquely arcwise connected,

o) @) S U U

meo(i)
By the definition of ¢,
U a.
meg(i)
so that g1(D?%) = g1(D}_1) U g1(C}) € U,nep(iy Um as desired. O

Next we construct the tree T' by connecting all the various components of S. The
definition is recursive, and is essentially identical to the definition of S; from ANV;.

To begin, let F; = S. For the recursive step, suppose we have constructed F;_1
for some 1 < i < k, and that all of the S}, j < 4, lie in a single arc component of
F;_1,say Gj_1. If S; C G;_1, then set E; = (. Otherwise let E; = [e; ,e;] be the
shortest arc between G;_; and S;, with e; € G;_; and e € S;. Let

F,=F,_,UE,.

i Z

Finally, let T = Fj.
The following lemmas will aid us in defining go : T'— D.
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Lemma 3.4. For each 1 <i <k, if B; # 0 then B;NF;_1 = {e; ,e; }.

R

Proof. This follows immediately from the above construction. O

Lemma 3.5. There is a finite Z C T\ S such that, for every 1 < i <k, if K;
denotes the connected component of T \ Z containing S;, then
1. K; CV;, and
2. K;\ S; is a finite union of pairwise disjoint intervals, each of the form (s, z),
with s € S; and z € Z.

The idea behind Lemma 3.5 is that we may find a finite set Z that fences off
each S; from the rest of T. A picture of (one possible version of) T" and Z is shown
below.

Proof of Lemma 3.5. We will construct the set Z by recursion. First, pick n > 0
small enough that, for every 1 <i < k,

1. B,(S;) C Vi,
2. for every 1 < j <k, if E;NS; =0, then B, (S;) N E; = 0.

To begin, let Zy = (). For the recursive step, we have two cases. If E; = (3, then
do nothing: set Z; = Z;_;. Otherwise, we have E; = [e; ,¢;] for some e; € F;_;
and e € S;. In this case, let z;” be the unique point of F; such that d(z;",e]) =7
(uniqueness follows from the fact that we are using a taxicab metric on D). If
e; ¢S, thenlet Z;, = Z;_1 U {zj} If e; € S, then let z; be the unique point of
E; such that d(e; , 2 ) =mn, and let Z; = Z;_1 U {2;", z; }. Finally, let Z = Zj.

To prove that Z has the required properties, we use induction. Specifically, by
induction on j, we show that, if K] denotes the connected component of F; \ Z;

containing S; then, for every 1 < i < k,
1. Kf CV;, and
2. K\ S; is a finite union of pairwise disjoint intervals, each of the form (s, z),
with s € S; and z € Z.

The base case is true by part (1) of Lemma 3.3. The inductive step follows easily
from Lemma 3.4 and our choice of zf As Fj, = T, this completes the proof of the
lemma. O
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We are now ready to define g3 : T"— D. For each 1 <1 < k, let K; denote the
connected component of S; in T'\ Z. The definition of g is piecewise, where we
view T as divided into three pieces: S, T'\ U, <, Ki, and ;<. (K \ ;).

If z €9, let go(x) = gi(x). If 2 € T\ U;cp Ki, let go(z) = f(x). If z €
U< (Ki \ S;), then x € (s,2) where z € Z and s is the point in S; that is closest
to z. On each such interval, define gy on (s, z) by extending it linearly between s
and z (where it has already been defined).

Proposition 2. For each 1 < i <n,

@inT)C |J Unm
me¢>()

Proof. Let x € U; N'T. We have three cases:

If x € S, then go(z) = g1(2), and g1(x) € U,,c4(;) Um by Proposition 1.

If x is in T\ J, <), K, then go(x) = f(x). There is some U,, € U containing f(z),
and m € ¢(i) by the definition of ¢. Thus gs(z) € Unmes(i) Um-

If v € ;< (K5 \ S;), then z is contained in an interval of the form (s, z), where
s € S and z € Z. By definition, gs(z) € [g2(s), g2(2)], and it is already established
that g2(s) and g2(2) are in U,,c ;) Um- By Lemma 3.1, g2(z) € U,ep) Um as
well. O

Finally, we are ready to define g : D — D. Define g so that g|r = go, and if
x € D\ T then g(x) = g2 o mr(x).

It remains to show that this map g has the required properties. First we check
that g imposes the same pseudo-orbit pattern on U that f does:

Proposition 3. For cach 1 <i <k, g(Ui) € U,,cp() Um

Proof. Let x € U;, and let [z,t] be the shortest path from z to t, where t = 7p(z).
Because U; is arcwise connected, and because D is uniquely arcwise connected, we
must have [z,¢] C U;. Then g(z) = g2(t) € U,,,e () Un by Proposition 2. O

Next we check that g € B.(f):
Proposition 4. p(f,g) <e

Proof. Let x € D, and fix 1 <4 < k with € U;. By Proposition 3 there is some
m € ¢(i) such that g(z) € U,,. Furthermore, f(z) € f(U;) and f (U;) N U, # 0.
By our choice of the cover U,

d(f(z),g(z)) < diam (f(U;)) + diam (U,,) < e.
As x was arbitrary, it follows that p(f,g) < e. O

Next, as promised, we find some v > 0 such that

L. By(g) € B:(f);
2. if h € B,(g) then every « pseudo-orbit of h is %—shadowed; therefore

Fix 1 <4 < k. Because

U v

mee(i)
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and g(Ui) is compact, there is some \; > 0 such that for every z € U;,
< J Unm
me¢(i)
Let A =min{\; : 1 <i <k}, and let

A
f}/min{gp(fag)a 2,5}

Because v < € — p(f,g), we automatically have B,(g) C B-(f). It remains to
show that for every h € B,(g), every ~-pseudo-orbit of A is %—shadowed by an orbit
of h.

Lemma 3.6. If h € B,(g), then, for every 1 <i <k,

1. h(Aim) 2 UJ€¢(m) A, j for every m € ¢(i).

2. h( ) < Um€¢(z Un
Proof. (1) If p(g,h) < , then p(g|a,hla) < d. But gla = go, and by our choice of
go and g, p<90> h|A) <9 implies h(Az,m) = h|A(Ai,m) 2 Uj€¢(m) Am,j-

(2) Suppose p(g,h) < 7 and let = € U;. We have d(g(z), h(z)) < v < 3, so that
h(z) € Bx(g(z)) € U,ep(iy Um by our choice of A. O

We may interpret the previous lemma as asserting that for every h € B,(g), for
any walk through ® there is a sequence of arcs that, when acted on by h, follow
that walk through ®. The next lemma asserts formally that any ~y-pseudo-orbit of
h is described by a walk through ®:

Lemma 3.7. Suppose h € By(g), and suppose (x;) is a y-pseudo-orbit for h. If
xz; € Uj, then xj1 € Um€¢(i) Up,.

Proof. Fix h € B,(g), and a y-pseudo-orbit for h, (x;). Suppose z; € U Then
d(h(z;),g(z;)) <~ < % (because p(g,h) <), and d(zj41,h(z;)) <y < 5 (because
(x;) is a y-pseudo-orbit for h). Thus

zj11 € Ba(g U Umn
meop(i

by our choice of A. O

Putting together the previous two lemmas, we get:

Proposition 5. If h € B,(g), then h has the property that every y-pseudo-orbit is
%-shadowed.

Proof. Fix h € By(g), and let (z;) be a v-pseudo-orbit for h. For each j, choose

some I(j) € {1,...,k} such that x; € Uj(;y. Thus I : N — {1,...,k} is a function

describing the 1t1nerary of our pseudo-orbit. By Lemma 3.7, I(j —|— 1) € ¢(I(4)) for

every j € N; in other words, I describes a walk through ®. By Lemma 3.6,
h(ArGrG+n) 2 Arge.aG+2)

for every j € N. From this and the compactness of D, we may conclude that

m h™? AI(J) I(J+1)) # 0.

JjEN
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Thus there is some y € Aj(g),7(1) such that

W (y) € Argy.a+1) S Urg)

for every j € N. By the definition of I, x; € Uy ) for all j € N as well. Thus

3

d(hj(y),xj) < diam(Uy ;) < 5

1
< =
n

for every j € N. Hence every ~-pseudo-orbit for h is e-shadowed. O

Corollary 1. The set R, of all h € C(D) with the property that there is some
v > 0 such that every y-pseudo-orbit for h is e-shadowed has dense interior in (D).

This corollary completes the proof of the theorem: we have showed that the set

R, described above has dense interior for arbitrary n € N. Thus R = (), .y Rn is
co-meager in C(D). As R is precisely the set of functions in C(D) with shadowing,
we are done.
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