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Abstract. τ is a continuous map on a metric compact space X . For a continuous function φ : X → R we
consider a 1-dimensional map T (possibly multi-valued) which sends a local φ-maximum on τ trajectory to

the next one: consecutive maxima map. The idea originated with Lorenz [14]. We prove that if T has a
horseshoe disjoint from fixed points, then τ is in some sense chaotic, i.e., it has a turbulent trajectory and

thus a continuous invariant measure.

1. Introduction

The idea of using successive maxima of one variable in a higher dimensional dynamical system was
introduced by Lorenz in his numerical studies of a 3-dimensional system of differential equations that model
atmospheric effects [14]. Plotting the successive maxima of z-component he discovered a simple unimodal
functional relationship T between one maxima and the previous one. Since the orbits of such 3 dimensional
system maps looked chaotic, the unproved conclusion was that the one-dimensional map for successive
maxima was a simple indicator of that chaos. Indeed, the successive maxima map was modeled by a piecewise
expanding map which is exact [11, p.125]. This gave some credence to the hypothesis that the overall system
must be chaotic. However, the connection between ergodic properties of the successive maxima map and
the original map have never been studied theoretically. It is the purpose of this note to investigate such a
connection. In section 2 we start with a discrete time one dimensional map τ and define the map of successive
maxima τ̄M . We prove that there there is an interesting relationship between the maxima map and the first
return map τA, namely that τ̄M ◦ τ = τ ◦ τA. From this it follows that if τ̄M behaves chaotically then so
must τ .

In practice we often have an observable 1-dimensional function that is multi-valued. The methods of
this paper allow us to study this situation. Our main result proves that if the successive maxima multi-
valued map is chaotic in an appropriate sense then so is the original higher dimensional map. Our main
result says that if the observed 1-dimensional map T (possibly multi-valued) has a horseshoe or generalized
horseshoe (Definitions 5 and 6) whose support is disjoint with the images of the fixed points of the original
transformation τ , then τ has a turbulent trajectory. In particular we prove the existence of a continuous
invariant measure for the original map τ .

In section 6 we present a number of examples.

2. Successive maxima map

Let X be a compact metric space space and τ : X → X a continuous transformation. Let φ : X → R be
a continuous function.

Define A as follows:

A =
{

x ∈ X| φ(x) ≤ φ(τ (x)) ≥ φ(τ2(x))
}

.

Let M = τ (A). We call M the set of relative φ-maxima of trajectories of τ . Both A and M are compact
subsets of X.

Definition 1 (Background successive maxima map). The map τ̄M : M → M defined by τ̄M (y) = τk(y),
where k = k(y) = min

{

j ≥ 2|τ j−1(y) ∈ A
}

is called the background successive φ-maxima map of τ .
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Remark 1. If n(y) = min
{

j ≥ 1|τ j(y) ∈ A
}

(time of first entrance to A), then k(y) = n(y) + 1. So,

τ̄M (y) = τn(y)+1(y).

Claim 1. For all x ∈ A,

τ̄M (τ (x)) = τ (τA(x)),

where τA(x) is the first return to A map induced by τ .

A
τA−−−−→ A





y

τ





y

τ

M
τ̄M−−−−→ M

Proof. Suppose x ∈ A. Then

τ (τA(x)) = τk+1(x),

where k = min
{

j ≥ 1|τ j(x) ∈ A
}

. It follows that

τ (τA(x)) = τ `(x),

where ` = k + 1 = min
{

j ≥ 1 : τ j−1(x) ∈ A
}

. Since x = τ1−1(x) ∈ A, ` = min
{

j ≥ 2 : τ j−1(x) ∈ A
}

.
Therefore,

τ (τA(x)) = τ `(x) = τ̄M (τ (x)).

�

Proposition 1. For every N ∈ N and all x ∈ A, τ̄NM (τ (x)) = τ (τNA (x)).

Proposition 2. If τ̄M has a periodic orbit, then so does τ . If τ has a periodic point x such that φ(orb(x))
is not a singleton, then τ̄M has a periodic orbit.

Proof. Suppose there exists y ∈ M and N ∈ N such that τ̄NM (y) = y. Then τk+N(y) = y, where k =
min

{

j ≥ 2|τ j−1(y) ∈ A
}

.

Conversely, suppose there exists x ∈ I and N ≥ 2 such that τN (x) = x. There is at least one relative

φ-maximum in the orbit of x; call it y. Then τ̄ jM (y) ∈ orb(x) =
{

x, τ(x), . . . , τN−1(x)
}

, for every j ∈ N.
Therefore, y is periodic under τ̄M . �

We define successive φ-maxima map on φ(M) as follows

Definition 2 (Successive φ-maxima map). The relation

T = {(φ(x), φ(τ̄M(x))) | x ∈M} ⊂ φ(M) × φ(M) ,

is called successive φ-maxima relation of τ . In general T defines a multi-valued map. If T defines a function,
it is called the successive φ-maxima map of τ .

A continuous (measurable) function f : φ(M) → φ(M) is called a continuous (measurable) selection of
relation T if for any x ∈ φ(M) we have f(x) ∈ {T (x)}.
Remark 2. If T defines a map, then it is a factor of τ̄M : M → M , as defined by T (φ(x)) = φ(τ̄M (x)),
shown in the diagram below. More generally, if f is a selection of T , then f is a factor of τ̄M .

A
τA−−−−→ A





y

τ





y

τ

M
τ̄M−−−−→ M





y
φ





y
φ

φ(M)
T−−−−→ φ(M)



CHAOS FOR SUCCESSIVE MAXIMA MAP IMPLIES CHAOS FOR THE ORIGINAL MAP 3

3. Turbulent trajectories

Definition 3. The ω-limit set ω(x) of x is the set of limit points of all convergent subsequences of (τn(x))∞n=0.

Definition 4. The trajectory
{

x, τ(x), τ2(x), . . .
}

is called turbulent if ω(x) is a compact, nonempty set
which does not contain periodic points.

Since we consider a compact space X, the only real condition in this definition is the absence of the
periodic points from ω(x).

Remark 3.

ω(x) =

∞
⋂

n=0

τn(orbτ (x))

Now, we will explore the question: Does the existence of a turbulent trajectory for T imply the existence
of a turbulent trajectory for the original map τ? In general, the answer is no but we will present conditions
under which it does hold. We will prove a number of auxiliary results.

First, we will study the relation between turbulent trajectories of τ and the turbulent trajectories of τ̄M .

Proposition 3. Suppose that y ∈M has a periodic point z ∈ ωτ (y). If φ(orbτ(z)) has more than one point
then there is a periodic point in orb(z) which is also in ωτ̄M

(y).

Proof. Let y ∈ M , and suppose that there is a periodic point z ∈ ωτ (y) with period p. Suppose that
φ(orbτ (z)) = {x0, . . . xm−1} not a singleton. Let 0 < ε1 < 1/2 be chosen so that

Bε1 (xj) ∩Bε1(xk) = ∅

for j 6= k. Let 0 < δ1 be chosen so that φ(Bδ1 (t)) ⊆ Bε1 (φ(t)). Let 0 < γ1 be chosen so that τ i(Bγ1 (t)) ⊆
Bδ1 (τ

i(t)) for 0 ≤ i ≤ 2p. Then choose N1 ∈ N so large that τN1 (y) ∈ Bγ1 (z). Then by our choice of γ1 we
have

τN1+j(y) ∈ Bδ1 (τ
j(z))

for 0 ≤ j ≤ 2p. This implies φ ◦ τN1+j(y) ∈ Bε1 (φ ◦ τ j(z)) for 0 ≤ j ≤ 2p. So φ ◦ τN1 (y), φ ◦ τN1+1(y), · · ·φ ◦
τN1+p(y) visit each open set Bε1(x0), Bε1(x1), . . .Bε1 (xm) and return to the first. This implies that there is
some 0 ≤ k ≤ p with

φ ◦ τN1+k(y) ≤ φ ◦ τN1+k+1(y) ≥ φ ◦ τN1+k+2(y) ,

i.e., τN1+k+1(y) ∈ M and there is some `1 with φ ◦ τN1+k+1(y) ∈ Bε1 (x`1).
Continue the argument to get a point xr = φ ◦ τ s(z) ∈ φ(orbτ(z)) and a subsequence Nij + kij + 1 such

that

τNij
+kij

+1(y) ∈M

and

τNij
+kij

+1(y) ∈ Bγj
(τ s(z)).

So

φ ◦ τNij
+kij

+1(y) ∈ Bεj
(xr)

and

φ ◦ τNij
+kij

+1(y) → xr.

But more importantly by ensuring γj → 0 we have

τNij
+kij

+1(y) → τ s(z).

Thus there is some 0 ≤ s < p with τ s(z) ∈ ωτ̄M
(y). �

Now, we will study the relation between turbulent trajectories of τ̄M and the turbulent trajectories of T .

Proposition 4. If ωτ̄M
(x) contains a periodic point, then the set ωT (φ(x)) contains a periodic point.
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Proof. First, we will prove that if τ̄M has a periodic trajectory {yi = τ̄ iM (y)}pi=0 , then points {φ(yi)}pi=0 form
a periodic trajectory of T . This holds since for any 0 ≤ i ≤ p we have φ(τ̄M (yi)) = φ(yi+1) ∈ T (φ(yi)), with
the understanding that p+ 1 = 0.

Assume that ωτ̄M
(x) contains a periodic point. The trajectory {τ̄ iM (x)}∞i=0 is projected by φ into the set

{T i(φ(x))}∞i=0 since for any i ≥ 0 we have φ(τ̄ i+1
M (x)) ∈ T (φ(τ̄ iM (x))). Thus, since φ is continuous we have

φ(ωτ̄M
(x)) ⊂ ωT (φ(x)) .

By the first part of this proof, ωT (φ(x)) contains a period point. �

Proposition 3 cannot be improved, i.e., the assumption φ(orb(z)) is not a singleton cannot be omitted.
This is shown by a counterexample in the next section.

We will use Proposition 3 to show that if consecutive maxima map T (possibly multivalued) has a horse-
shoe, then the original map τ has an ”almost turbulent trajectory”, i.e., a trajectory whose ω-set is infinite
and does not contain a periodic trajectory with period larger than 1. It may contain a fixed point which has
to be checked separately.

We will assume that τ has only isolated periodic points. Such an assumption is often made and a map τ
generic in any reasonable sense satisfies it. Then, τ has a countable number of periodic points. We will prove
that a generic φ sends elements of any periodic trajectory with period k > 1 onto k distinct values. We say
that φ ∈ C0(X,R) separates periodic orbit O = {z1, z2, . . . , zk}, k > 1, if φ(zi) 6= φ(zj), 1 ≤ i < j ≤ k.

Lemma 1. Let X be a normal infinite space without isolated points. The set of functions φ ∈ C0(X,R) which
separate all periodic orbits of periods larger than 1 is generic, i.e., of second Baire’s category in C0(X,R).

Proof. Let O = {z1, z2, . . . , zk}, k > 1, be a periodic trajectory of τ . The set of functions φ such that
φ(zi) = φ(zj) is closed and nowhere dense in C0(X,R), for any zi 6= zj. Thus, its complement is open and
dense. Then, the set of φ’s which separate O is open and dense as a finite intersection of such sets. Then,
the set of φ’s which separate all periodic orbits of τ is of second Baire’s category in C0(X,R). �

Definition 5. We say that the map T = Tφ defined using the function φ has a ”horseshoe” when there
exist mutually disjoint compact subsets J1, J2, . . . , Jk ⊂ φ(M) and a selection T1 of Tφ such that, for any
1 ≤ i ≤ k, we have

T1(IntJi) ⊃ J1 ∪ J2 ∪ · · · ∪ Jk ,
where IntJ is the interior of J .

Definition 6. We say that the multivalued map T = Tφ, defined using function φ, has a ”generalized
horseshoe” when there exist mutually disjoint compact subsets J1, J2, . . . , Jk ⊂ φ(M) and a selection T1 of
Tφ such that, for any 1 ≤ i ≤ k, we have

T1(IntJi) ⊃ Jj ,

for any 1 ≤ i, j ≤ k such that aij = 1 in a 0, 1 mixing matrix A = (aij)1≤i,j≤k.

Lemma 2. If Tφ has a horseshoe or a generalized horseshoe J1, J2, . . . , Jk, then there exists a neighbourhood
of U ⊂ C0(X,R) of φ such that J1, J2, . . . , Jk form a horseshoe for any Tψ with ψ ∈ U .

Proof. The condition T1(IntJi) ⊃ J1 ∪ J2 ∪ · · · ∪ Jk is preserved when we change φ sufficiently little in
C0(X,R). �

Definition 7. A trajectory whose ω-set is infinite and does not contain a periodic trajectory with period
larger than 1 is called an almost turbulent trajectory.

Proposition 5. If T has a horseshoe or a generalized horseshoe, then τ has an almost turbulent trajectory.

Proof. Let T = Tφ. By Lemma 1, arbitrarily close to φ, there is a ψ which separates all periodic orbits of τ .
If we take ψ sufficiently close to φ, by Lemma 2 ψ also has a horseshoe. The existence of a horseshoe implies
the existence of a turbulent trajectory [13]. Then, by Proposition 4, τ̄M defined using ψ has a turbulent
trajectory, and by Proposition 3, τ has an almost turbulent trajectory. The only thing we cannot control is
the possibility that this trajectory has a fixed point in its ω-set. �

Proposition 6. If T has a horseshoe or a generalized horseshoe J1, J2, . . . , Jk, such that ∪ki=1Ji is disjoint
from φ(U), where U is some neighbourhood of fixed points of τ , then τ has a turbulent trajectory.
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Proof. By [13] the turbulent set of T is contained in the union of sets forming a horseshoe. Thus, the
turbulent trajectory of τ obtained in Proposition 5 is disjoint from U and cannot have a fixed point in its
ω-set. �

Using the results of [6] we obtain the following:

Theorem 1. If τ is continuous and the successive maxima map T has a horseshoe or a generalized horseshoe
disjoint from φ image of a neighbourhood of fixed points of τ , then the transformation τ has a continuous
ergodic invariant measure.

4. Can Proposition 3 be improved ?

The answer to the question above is no. The assumption φ(orb(z)) is not a singleton cannot be omitted
in general. A counterexample follows.

Example 1. Let C ⊂ [0, 1] be the usual Cantor middle third set and define T : C → C to be the tent map
given by

T (x) =

{

3x : x ≤ 1/3
3(1 − x) : x ≥ 2/3

Let c ∈ C be a point for which ωT (c) = C.
Now, let X = C ×S where S is the circle with representation R/Z. Let α ∈ [0, 1] be irrational, and define

τ : X → X by

τ (x, θ) =

{

(T (x), θ) : x ∈ [0, 1/9]∪ [8/9, 1]
(T (x), θ+ α) : x ∈ [2/9, 1/3]∪ [2/3, 7/9]

That is, τ maps (x, θ) to a point with first coordinate T (x) and with second coordinate unchanged if
T (x) ≤ 1/3. If T (x) ≥ 2/3, then τ also rotates the point by the irrational angle α.

Now, define φ : X → R by φ(x, θ) = x. Since φ depends only on x,

A = {x ∈ X : φ(x, θ) ≤ φ(τ (x, θ)) ≥ φ(τ2(x, θ))} = {x ∈ X : x ≤ T (x) ≥ T 2(x)} × S.

Checking the inequalities under iteration of T , we see that

A = ({0} ∪ (([1/4, 1/3]∪ [2/3, 3/4])∩ C)) × S

and so

M = ({0} ∪ ([3/4, 1]∩ C)) × S

Let y = (c, 0) ∈ X where c ∈ C was chosen to have ωT (c) = C. Observe that, for all ε > 0 and N ∈ N,
there exists n ≥ N such that 0 ≤ Tn(c) < ε, and thus there exists x ∈ {0} × S with x ∈ ωτ(y). Since T is
the identity map on {0} × S, x is fixed and hence periodic. Thus, ωτ(y) contains a periodic point.

However, notice that for all n ∈ N, Tn(c) 6= 0, so that τn(y) /∈ {0}×S. In particular, τ̄nM (y) ∈ [3/4, 1]×S
for all n ∈ N. Thus ωτ̄M

(y) ⊆ [3/4, 1] × S. For all (x, θ) ∈ [3/4, 1] × S, it is apparent that τn(x, θ) =
(Tn(x), θ+ kα) for some 0 ≤ k ≤ n. However, for τn(x, θ) to be an element of M , it must be the case that
k > 0. Thus, for all n ∈ N, τ̄nM (x, θ) = (T k(x), θ+ jα) for some k, j ≥ n. In particular, τ̄M rotates the angle
by an integer multiple of the irrational angle α, and hence for all n ∈ N, τ̄nM (x, θ) 6= (x, θ). Thus, (x, θ) is
not periodic and ωτ̄M

(y) contains no periodic points.

Remark 4. The map τ above can be altered to use a rational rotation rather than a zero rotation on
[0, 1/9]∪ [8/9, 1]× S, which will yield ωτ (y) having non-fixed periodic points.

5. Invariant measure for τ̄M implies invariant measure for τ

Let us define τM,A : M → A to be the first visit map to the set A:

τM,A(x) = τk(x) , where, τk(x) ∈ A , k > 0, τ j(x) 6∈ A , j = 1, 2, . . . , k − 1 .

Then, we have

τ̄M = τ ◦ τM,A and τA = τM,A ◦ τ .
Let us assume that τ̄M admits an invariant measure µ, i.e., for any measurable subset B of M we have

µ(τ̄−1
M (B)) = µ(B) .
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Let us define a measure ν on A as follows:

ν(Z) = µ(τ−1
M,A(Z)) .

Then, we have

ν(τ−1
A (Z)) = µ(τ−1

M,A(τ−1
A (Z))) = µ(τ−1

M,A(τ−1(τ−1
M,A(Z))))

= µ(τ̄−1
M (τ−1

M,A(Z))) = µ(τ−1
M,A(Z)) = ν(Z) .

We proved that the first return map τA has an invariant measure. Then, it follows that τ also has an
invariant measure. By the nature of the construction, if µ is absolutely continuous and τ is non singular
then the τ -invariant measure is also absolutely continuous.

6. Examples

6.1. Maxima map for a discretization of the Lorenz system. Edward Lorenz [14] introduced a math-
ematical model for atmospheric dynamics, which is a system of three ordinary differential equations:

ẋ = σ(y − x),

ẏ = x(ρ− z) − y,

ż = xy − βz,

where σ, ρ and β are system parameters. Lorenz used σ = 10, ρ = 28 and β = 8/3. This system exhibits
chaotic behaviors and a strange attractor exists [18].

Instead of considering the above continuous system, we introduce a discrete Lorenz system. Letting h be
the step size, n ∈ N, we rewrite the above system as follows:

x((n + 1)h) − x(nh)

h
= σ(y(nh) − x(nh)),

y((n + 1)h) − y(nh)

h
= x(nh)(ρ− z(nh)) − y(nh),

z((n+ 1)h) − z(nh)

h
= x(nh)y(nh) − βz(nh).

This simplifies to

x((n + 1)h) = hσy(nh) + (1 − hx(nh)),

y((n + 1)h) = hx(nh)(ρ− z(nh)) + (1 − h)y(nh),

z((n + 1)h) = hx(nh)y(nh) + (1 − hβ)z(nh).

We define the discrete Lorenz system L : R
3 → R

3 as

(6.1) L





x
y
z



 =





hσy + (1 − hσ)x
hx(ρ− z) + (1 − h)y
hxy+ (1 − hβ)z



 .

An example of a trajectory of this discrete system is shown in Figure 1.
For a given function φ : R

3 → R our successive φ-maxima map is defined by the relation

T = {(φ(x), φ(τM (x)))|x ∈M} .

Now, we list some examples of successive maxima maps associated with different functions φ.
Case(I): Let φ : R

3 → R be defined as φ(x, y, z) = z, and let h = 0.005. The set M is shown in Figure
3, and the corresponding successive maxima map is shown in Figure 4.

We fitted a curve to data plotted in Figure 4. It turns out that the fitting map is piecewise expanding,
with two onto branches. Thus, it is topologically conjugated to the standard tent map. The formula for the
first branch is

T (x) = −754.1523850 + 71.23641413x− 2.182157170x2 + .02266171341x3, 28 ≤ x ≤ 48.1 .
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Figure 1. A plot of the orbit starting at (0.1,-0.3,1.7) using σ = 10, ρ = 28, β = 8/3 and
h = 0.005 with 20000 iterations for system (6.1).

Below we provide an example of a generalized horseshoe for the standard tent map. Let ε be a small
positive number (say < 0.01). The intervals I1 = [2/12 − ε, 3/12 + ε], I2 = [4/12 − ε, 6/12 + ε] and
I3 = [9/12− ε, 11/12 + ε] form a horseshoe (Figure 2) with a matrix

A =





0 1 0
0 0 1
1 1 0



 .

A is mixing and its largest eigenvalue is 1.3247.
Case(II): Let us consider φ(x, y, z) = εx+ ξy + z, for (x, y, z) ∈ R

3 and h = 0.005, ε = 0.001, ξ = 0.001.
The set M is shown in Fig. 5, and the corresponding successive maxima map is shown in Fig.6.

We fitted a curve to data plotted

6.2. Maxima map for one humped map τ . Let I = [0, 1]. τ is a one humped map of [0, 1], i.e.,
τ (0) = τ (1) = 0, τ (c) = 1, τ is increasing on [0, c] and decreasing on [c, 1].
τ has two fixed points 0 and a. For any x ∈ [0, a] we have τ (x) ≥ x and for any x ∈ [a, 1] we have

τ (x) ≤ x. Thus, no point in [0, a] is in M and (a, 1] = M . Let b be the other preimage of a, i.e., τ (b) = a
and b < a. Then, τ−1([a, 1]) = [b, a] and the only way to fall into M is go through [b, a]. This shows that in
the case of a one humped map, we have

τ̄M = τM = τ[a,1],

where τ[a,1] is the first return map for the subinterval [a, 1]. Note that in this case τM = τ ◦ τA, where
A = [b, a]

6.3. Maxima map for second iterate of tent map τ . The set

A = [0.1, 1/6]∪ [0.2, 0.3]∪ [1/3, 0.4]∪ [0.7, 0.8] ,

and set

M = [0.4, 2/3]∪ [0.8, 1] .

In this case the map τ̄M is not the first return map to the set M .

6.4. Consecutive maxima relation for rotation of a circle. Let τ : S1 → S1 be a rotation through
angle α. We assume that α < 2π/3 and is not of the form 2π/n for a natural n. Let φ : S1 → R be
the function φ(t) = cos(t), i. e., the value of the x coordinate of the point (x, y) = (cos(t), sin(t)) ∈ S1,
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Figure 2. Intervals forming a generalized horseshoe for tent map.
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Figure 3. A plot of the orbit starting at (0.1,-0.3,1.7) for system (6.1), the set M is shown
in black using φ(x, y, z) = z.

t ∈ [0, 2π). We will identify points on S1 with their arguments t. The arguments are considered modulo 2π.
It is easy to see that

A = {t ∈ [0, 2π) : φ(τ2(t)) ≤ φ(τ (t)) ≥ φ(t)} = [−α/2 − α,−α/2] ,

and

M = τ (A) = [−α/2, α/2] .
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Figure 4. The successive maxima map for the set M shown in Fig. 3 and φ(x, y, z) = z,
h = 0.005. Thin line shows the fitted curve.
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Figure 5. A plot of the orbit starting at (0.1,-0.3,1.7) for system (6.1), the set M is shown
in black using φ(x, y, z) = εx+ ξy + z.

Since τ is one-to-one, τ̄M = τ ◦ τA = τM , the first return to M map. Let t ∈ [−α/2, α/2] = M . The time
n(t) of the first return to M can be found as the smallest integer n such that

−α/2 + 2π ≤ nα+ t ≤ α/2 + 2π ,
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Figure 6. The successive maxima map for the set M shown in Fig. 5 and φ(x, y, z) =
εx+ ξy + z, h = 0.005

a

a

b

Figure 7. One humped map.

or

n ∈ [(2π − t)/α− 1/2, (2π− t)/α+ 1/2] .

Thus,

n(t) = E((2π − t)/α− 1/2)) + 1 ,
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Figure 8. Sets A (on x-axis) and M (on y-axis) for second iterate of the tent map.

except for one t = 2π − nα− α/2. Thus,

τM (t) = t+ n(t)α = t+ (E((2π − t)/α− 1/2)) + 1)α .

Thus, the consecutive maxima two-valued map T is defined as

x→{arccos(x) + n(arccos(x))α,− arccos(x) + n(− arccos(x))α}
= {arccos(x) + (E((2π − arccos(x))/α− 1/2)) + 1)α,− arccos(x) + (E((2π + arccos(x))/α− 1/2)) + 1)α} ,

for x ∈ φ(M) = [cos(α/2), 1].

Example 2.

For α = 2.15722723 we have cos(α/2) = 0.4725506413 and the graph of T is shown in Figure 9 (a).
More interesting is the graph of T 3 shown in Figure 9 (b). It contains two onto ”branches”, drawn in

black. It shows that the intervals J1 = [p1, p2], J2 = [p2, 1] (p1 = cos(α/2), p2 ≈ 0.8712149 is the solution of
the equation T 3(x) = p1) form a kind of ”horseshoe” for T 3, i.e., T 3(Ji) ⊃ J1 ∪ J2, i = 1, 2. This is not a
horseshoe satisfying our definition since it is not a horseshoe for any selection of T 3.

The results of numerical simulation suggest that two-valued map T has an absolutely continuous invariant
measure.

6.5. Relation T for rotation of a circle through angle α = π/4. Let τ : S1 → S1 be the rotation
through angle α = π/4. Let φ : S1 → R be the function φ(t) = cos(t), i.e., the value of the x coordinate of
the point (x, y) = (cos(t), sin(t)) ∈ S1, t ∈ [0, 2π). We will identify points on S1 with their arguments t. The
arguments are considered modulo 2π. The two valued map T : [−1, 1] → [−1, 1] is defined by the relation
T (φ(t)) = φ(τ (t)), t ∈ [0, 2π), or

x → {T1(x), T2(x)} = {cos (arccos(x) + π/4) , cos (− arccos(x) + π/4)} ,
for x ∈ φ(S1) = [−1, 1].

The graph of T is shown in Figure 10.



12 A. BOYARSKY, P. ESLAMI, P. GÓRA, ZH. LI, J. MEDDAUGH, AND B. E. RAINES

Figure 9. Graph of consecutive maxima relation T , α = 2.15722723, and its third iterate T 3.

Figure 10. Graph of relation T for rotation through angle α = π/4, T1 in black, T2 in gray.

We consider partition of [−1, 1] by points−1,− cos(π/4) = −
√

2/2, 0,
√

2/2, 1 into intervals J1 = [−1,−
√

2/2],

J2 = [−
√

2/2, 0], J3 = [0,
√

2/2], J4 = [
√

2/2, 1]. The incidence matrix of T with this partition is

M =









1 1 0 0
1 0 1 0
0 1 0 1
0 0 1 1









.
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The maximal eigenvalue of M is 2, which shows that the entropy of T is at least ln(2). (See Section 7.) At
the same time each trajectory of τ (and of T ) consists of only a finite number of points.

7. Topological entropy for relations

We follow [9, 10, 16, 5, 17]. Let T be a relation on a compact metric space (X, d). A sequence
(x0, x1, x2, . . . , xk−1) ∈ Xk is called a trajectory of x0 if xi+1 ∈ T (xi), for i = 0, 1, . . . , k − 2. We de-
fine the distance dk between trajectories of length k as follows

dk((x0, x1, x2, . . . , xk−1), (y0, y1, y2, . . . , yk−1)) = max
0≤i≤k−1

d(xi, yi) .

The set A of trajectories of length k is called (ε, k) separated if for any two trajectories x̄, ȳ ∈ A we have
dk(x̄, ȳ) > ε. Since X is compact, such a set is finite. Let us define S(ε, k) as the supremum of cardinalities
of all (ε, k) separated sets. The topological entropy of T is defined as

h(T ) = lim
ε→0

lim sup
k→∞

1

k
lnS(ε, k) .
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1197-1202.
[19] MR2311363 (2008c:37030) Visaya, Maria Vivien V., A lower estimate of the topological entropy from a one-dimensional

reconstruction of time series, J. Math. Kyoto Univ. 46 (2006), no. 3, 637–655.
[20] MR0448506 Yershov, M. P., Extensions of measures. Stochastic equations, Proceedings of the Second Japan-USSR Sym-

posium on Probability Theory (Kyoto, 1972), pp. 516–526. Lecture Notes in Math., Vol. 330, Springer, Berlin, 1973.
[21] Ershov, M.P., Extensions of measures and stochastic equations, Theory of Probability and its Applications 19, no. 3,

(1974), 431–444.



14 A. BOYARSKY, P. ESLAMI, P. GÓRA, ZH. LI, J. MEDDAUGH, AND B. E. RAINES

(A. Boyarsky) Department of Mathematics and Statistics, Concordia University, 1455 de Maisonneuve Blvd.

West, Montreal, Quebec H3G 1M8, Canada

E-mail address, A. Boyarsky: boyar@alcor.concordia.ca

(P. Eslami) Dipartimento di Matematica, Universita’ di Roma Tor Vergata, Via della Ricerca Scientifica, I-00133

Roma, Italy

E-mail address, P. Eslami: eslami@axp.mat.uniroma2.it
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