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Abstract. In this paper we consider quadratic polynomials on the complex

plane fc(z) = z2 + c and their associated Julia sets, Jc. Specifically we con-

sider the case that the kneading sequence is periodic and not an n-tupling. In
this case Jc contains subsets that are homeomorphic to the unit circle, usually

infinitely many disjoint such subsets. We prove that fc : Jc → Jc has shad-

owing, and we classify all ω-limit sets for these maps by showing that a closed
set R ⊆ Jc is internally chain transitive if, and only if, there is some z ∈ Jc
with ω(z) = R.

1. Introduction

Let fc(z) = z2 + c with c chosen so that the kneading sequence of fc is periodic,
but not an n-tupling. The interesting dynamics of this map are carried on its Julia
set, Jc. This is a compact, locally connected space which contains (usually infinitely
many) circles.

In a series of papers Baldwin established a symbolic representation for these
spaces and their dynamics and also for quadratic Julia sets which are dendrites, [1]
and [2]. Baldwin begins by defining a non-Hausdorff itinerary topology on a space
of symbols. Then he identifies certain periodic sequences, τ , which are candidates
for kneading sequences of quadratic maps. It is important to note that in this
context, the kneading sequence of the quadratic map is not the itinerary of the
critical point, but rather is defined in terms of external rays. Precise definitions
and discussion of kneading sequences for a quadratic map fc can be found in [9]
and [1]. Associated to each τ is a Hausdorff subspace Eτ , and, in the case that τ is
the kneading sequence for some fc, Eτ is homeomorphic with Jc. Moreover in this
case fc : Jc → Jc is topologically conjugate to the shift map on Eτ . In the case that
τ is not the kneading sequence of any fc the associated subspace Eτ is still defined
and is referred to as an abstract Julia set. These spaces are all compact, locally
connected, and usually contain many circles.

A set R is internally chain transitive (ICT) provided for every ε > 0 and x, y ∈ R
there is an ε pseudo-orbit in R from x to y. The ICT property has been studied
extensively. In many cases (such as shifts of finite type, dendritic Julia sets, topo-
logically hyperbolic maps, and certain maps of the interval) it can be shown that a
closed set R is ICT if, and only if, there is a point x with ω(x) = R; however there
are also many settings where this is not the case, (sofic shift spaces and certain
maps of the interval), [3], [4], [5], [6], and [7]. It seems that the key difference
between the two involves whether the dynamical system has shadowing which we
will define precisely in Section Three.
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It is known that when the Julia set of a quadratic map is not connected, it is a
Cantor set and the dynamics are conjugate to the shift map on {0, 1}N. When the
Julia set is connected, in all but some exceptional cases, it is locally connected, and
thus is either a dendrite or contains topological circles. In the disconnected and den-
dritic Julia sets, the dynamics exhibit shadowing and ω-limit sets are characterized
by the ICT property [3], [6].

In this paper, we consider the case where there is an attracting or parabolic
periodic orbit (and hence the Julia set contains circles), and show that similar
results hold in this context as well. Specifically we show that a closed subset R of
Jc is internally chain transitive if, and only if, there is a point z ∈ Jc with ω(z) = R.
We also prove that fc : Jc → Jc has shadowing.

In the next section we give some preliminaries and background to the symbolic
representation of circular Julia sets. We also prove an important result connecting
the symbolic representation to the metric. In Section Three, we prove that these
spaces have shadowing, and then we use this result in Section Four to prove the
main result characterizing ω-limit sets for the circular Julia sets.

2. Preliminaries

In [2], Baldwin develops a topology on a non-Hausdorff space of itineraries inside
of which one can find a natural subsets which are conjugate under the shift map
to quadratic Julia sets which are dendrites. In [1], he develops a similar theory
which similarly captures the dynamics of quadratic Julia sets whose kneading se-
quences are periodic but not n-tuplings. In this section, we give a brief summary
of definitions and results from these two papers.

Definition 1. Let Λ be the topological space with underlying set {0, 1, ∗}ω and
topology induced by the non-Hausdorff topology {∅, {0}, {1}{0, 1, ∗}} on each factor
space. We refer to this topology on Λ as the itinerary topology.

It is clear that Λ is not Hausdorff, although we will see that it has many Hausdorff
subspaces. For a finite sequence α ∈ {0, 1, ∗}<ω, we have the cylinder set of α in Λ
given by

BΛ
α = {β ∈ Λ : ∀i ≤ len(α) βi 6= ∗ ⇒ βi = αi}.

With this topology, Λ contains many shift invariant compact metric spaces, and
in particular contains copies of each dendritic Julia set [2]. We will be using the
notation that Baldwin develops in [1].

Definition 2. A sequence τ = (τi)i∈ω ∈ Λ is Λ-acceptable if and only if it satisfies

(1) For all n ∈ ω, τn = ∗ if and only if σn+1(τ) = τ .
(2) For all n ∈ ω with σn(τ) 6= τ , there exists k ∈ ω such that {τn+k, τk} =
{0, 1}, i.e., there exist disjoint open sets U, V ⊂ Λ with σn(τ) ∈ U and
τ ∈ V .

If τ is Λ-acceptable, then α ∈ Λ is (Λ, τ)-consistent if for all n ∈ ω, αn = ∗
implies σn+1(α) = τ . A sequence α is called (Λ, τ)-admissible if it is (Λ, τ)
consistent and for all n ∈ ω for which σn(α) 6= ∗τ , there exists k ∈ ω such that
{αn+k, τk−1} = {0, 1}.

Sequences τ which are Λ-acceptable correspond to kneading sequences of dendrite
maps. The sequences α which are (Λ, τ)-admissible are the itineraries of other points
on the associated dendrite.



SHADOWING AND ω-LIMIT SETS OF CIRCULAR JULIA SETS 3

Definition 3. For τ ∈ Λ, let Dτ = {α ∈ Λ : α is (Λ, τ)-admissible}.

Baldwin then proves the following theorems about Dτ in [2].

Theorem 4. Let τ be Λ-acceptable. Then Dτ is a shift-invariant self-similar den-
drite.

Theorem 5. Let fx : C → C by fc(z) = z2 + c. If the Julia set Jc of fc is a
dendrite, then there is a Λ-acceptable τ such that fc|Jc is conjugate to σ|Dτ .

Barwell and Raines have studied the dynamics of these spaces in [6]. In partic-
ular, they prove the following results.

Theorem 6. Let τ be Λ-acceptable. Then σ has shadowing on Dτ .

Theorem 7. Let τ be Λ-acceptable. Then B ⊆ Dτ is closed and internally chain
transitive if and only if B = ω(z) for some z ∈ Dτ .

As an immediate corollary, these properties hold for quadratic Julia sets which
are dendrites.

In order to capture the dynamics of Julia sets with periodic kneading sequences,
a different itinerary space is required since removal of a single point will not separate
the space enough to allow for the required uniqueness of itinerary[1]. To accomplish
the required encoding, Baldwin uses a second wild card # as follows.

The factor space for this itinerary topology is given by {0, 1, ∗,#}. For a sequence
α ∈ {0, 1, ∗,#}≤ω, let α�n = (αi)

n
i=0 and for i ∈ {0, 1}, let si(α) be the sequence

given by

(si(α))j =

 αj : αj ∈ {0, 1}
i : αj = ∗
1− i : αj = #

and let K(α) = {α, s0(α), s1(α)}.

Definition 8. Let Γ be the topological space with underlying set {0, 1, ∗,#}ω and
topology given by the basis {Bα : α ∈ {0, 1, ∗,#}<ω} where Bα = {β ∈ Γ : β�len(α) ∈
K(α)}.

Notice that in this topology, for α ∈ Γ, every neighborhood of α contains the
set K(α). If α contains the symbol ∗ or #, then this set contains three distinct
elements, and thus Γ is not Hausdorff.

Definition 9. A sequence τ ∈ Γ is Γ-acceptable provided it satisfies

(1) τ = α∗ for some α ∈ {0, 1}<ω.
(2) For all n ∈ ω, the sets K(σn(τ)) and K(τ) are either disjoint or equal, i.e.

σn(τ) = τ or there exist disjoint open sets U, V ⊂ Γ with σn(τ) ∈ U and
τ ∈ V .

If τ is Γ acceptable, then α ∈ Γ is (Γ, τ)-consistent provided that αn ∈ {∗,#} if
and only if σn+1(α) = τ . A (Γ, τ)-consistent α ∈ Γ is (Γ, τ)-admissible provided
that for all n ∈ ω, the set K(σn(α)) is either disjoint from both of, or equal to
one of, K(∗τ) and K(#τ), i.e. σn(α) ∈ {∗τ,#τ} or there exists disjoint open sets
U, V ⊂ Γ with σn(α) ∈ U and {∗τ,#τ} ⊆ V .

As in the case of Λ, we wish to consider certain Hausdorff subspaces of Γ. In
particular, we have the following analogue of Dτ .
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Definition 10. For τ ∈ Γ, let Eτ = {α ∈ Γ : α is (Γ, τ)-admissible}.

In [1], Baldwin proves the following results about Eτ .

Theorem 11. Let τ be Γ-acceptable. Then Eτ is a locally connected shift invariant
compact metric space on which σ is exactly two-to-one.

An important tool that is used in establishing the properties of Eτ and Dτ is the
existence of a continuous function from the consistent sequences onto the admissible
sequences. Baldwin defines the following[1].

Definition 12. Let τ be Λ-acceptable and let α be (Λ, τ)-consistent. Define χΛ
τ (α)

to be the β ∈ Dτ for which every neighborhood of β is a neighborhood of α.
Let τ be Γ-acceptable and let α be (Γ, τ)-consistent. Define χΓ

τ (α) to be the β ∈ Eτ
for which every neighborhood of β is a neighborhood of α.

That such a β exists is not immediately clear, but the fact is demonstrated by
Baldwin in [2] and [1].

As Baldwin notes, for most sequences α, χΓ
τ (α) = α. In fact it is only when

there exists n ∈ ω with σn(α) indistinguishable from τ (in the topology of Γ) that
χΓ
τ (α) 6= α.

The following result of Baldwin is Theorem 4.11 in [1].

Theorem 13. (Baldwin [1]) Let c ∈ C and suppose that fc has an attracting or
parabolic periodic point. Let θ be one of the external angles of the parameter c and
let τ be the kneading sequence of c. Suppose that τ is Γ-acceptable. Then fc|Jc is
conjugate to σ|Eτ .

For a Γ-acceptable sequence τ , the spaces Eτ and Dτ are both defined and in
fact the two are significantly related by the following function[1].

Definition 14. For Γ-acceptable τ , define ψτ : Eτ → Dτ such that for each α ∈
{0, 1}ω, ψτ (χΓ

τ (α)) = χΛ
τ (α).

The function ψτ has the following properties [1], as well as many others.

Theorem 15. Let τ be Γ-acceptable and let p be the period of τ . Then

(1) If β ∈ Dτ \ Pω, then ψ−1
τ (β) is a singleton.

(2) If β ∈ Pω, then Cβ = ψ−1
τ (β) is homeomorphic to a circle.

As Eτ is a subset of a non-Hausdorff space, the metric on Eτ is not immediately
obvious. We will now demonstrate that the metric on Eτ is consistent with a natural
definition of distance observable on finite initial segments.

Definition 16. Let τ be a Γ-acceptable sequence. Define Pn = {α ∈ Eτ : αi ∈
{∗,#} for some i ≤ n}, and Pω =

⋃
i∈ω Pi.

Definition 17. Let x, y ∈ Eτ . Then x�n ∼ y�n if and only if there exists z ∈ Pω
with {x�n, y�n} ⊆ {z�n, s0(z)�n, s1(z)�n}.

An important characteristic of Eτ is that the set {∗τ,#τ} separates Eτ . Then
Eτ = S0 ∪S1 ∪{∗τ,#τ} where S0 = {α ∈ Eτ : α0 = 0} and S1 = {α ∈ Eτ : α0 = 1}.

Lemma 18. Let x, y ∈ Eτ with x�n ∼ y�n and z ∈ Pω witnessing this. Then there
exist continua C(x) and C(y) in Eτ containing {x, z} and {y, z} respectively such
that for all i ≤ n, there exist j, k ∈ {0, 1} with σiC(x) ⊆ Sj and σiC(y) ⊆ Sk.
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Proof. First, let us observe that if x ∈ Pn then x�n contains a ∗ or a # and so
x�n = z�n and it follows that x = z. Thus, {x} is a continuum containing x and z
satisfying the desired criterion.

Now, suppose that x /∈ Pn.
In [1], Baldwin demonstrates that for all β ∈ {0, 1}<ω, the set Bτβ which is the

closure of Bβ ∩ Eτ in Eτ is connected. Furthermore, for such β, σ(Bτβ) = Bτσ(β).

Consider β = x�n. Then β ∈ {0, 1}<ω and Bτβ is a continuum that contains x.

Furthermore, it is clear that σi(Bτβ) = Bσ(β)τ ⊆ Sxi for i ≤ n. Thus, we need only
check that z ∈ Bτβ .

If x�n = z�n, then z ∈ Bτβ immediately. Otherwise, suppose without loss that

x�n = s0(z)�n.
We demonstrate that z ∈ Bτβ be showing that each neighborhood in Eτ of z

intersects Bτβ . To see this, fix l ∈ N and let k ∈ N such that k ≥ max{l, n} and

σk(z) = ∗τ . Define zl to be the point with zli = s(z0)i for i ≤ k and σk(zl) = #τ .
Then zl ∈ Bz�l ∩ Eτ and zl ∈ Bτβ . Thus Bz�l ∩B

τ
β for all l ∈ N, and z ∈ Bτβ .

That such a continuum exists for the pair y, z follows similarly. �

Notice that if x 6= y, at least one of C(x) and C(y) is nondegenerate.
To establish the relation between x�n ∼ y�n and the metric on Eτ , we use the

following result from R.L. Moore [10].

Definition 19. A continuum M has property N provided that for every ε > 0
there exists a finite collection G of nondegenerate continua such that every subcon-
tinuum of M of diameter greater than ε contains an element of G.

Moore proved the following.

Theorem 20. A regular curve M does not have property N if and only if there
exists an arc A ⊆ M such that for each subarc A′ ⊆ A there exists an arc B ⊆ M
whose intersection with A consists of precisely its endpoints, one of which belongs
to A′.

Recall that a continuum X is a regular curve provided that any two points of X
can be separated in X by a finite set [11].

Theorem 21. Let τ be a Γ-acceptable sequence. Then Eτ has property N .

Proof. First, observe that Eτ is a regular curve: each pair of points is separated by
a finite set (in fact, by a set of at most two points).

Assume that Eτ does not have property N. Then let A be the arc in Eτ as
guaranteed by Theorem 20 and B ⊂ Eτ an arc with endpoints in A.

Since ψτ is continuous, ψτ (A) and ψτ (B) are either arcs or points in Dτ . Since
Dτ is a dendrite and hence uniquely arcwise connected, ψτ (B) ⊆ ψτ (A). If ψτ (B) is
nondegenerate, then ψτ (B)∩ψτ (A) contains a point x which is not an endpoint of
ψτ (B) for which ψ−1

τ (x) is a singleton as there are at most countably many points
with non-degenerate pre-image. Then ψ−1

τ (x) ∈ A ∩ B and is not an endpoint of
B. This is a contradiction, and hence ψτ (B) is degenerate.

In this case, ψτ (B) = {β} with β ∈ Pω and B is an arc on the circle Cβ in Eτ and
A contains the complementary arc. Let A′ ⊆ A be a subarc contained in Cβ−B. Let
B′ be an arc in Eτ which intersects A only at its endpoints, one of which belongs
to A′. Then using an argument similar to that above, ψτ (B′) = {β′} for some
β′ ∈ Pω. Since ψτ (B′) intersects ψτ (A′) = {β}, we actually have ψτ (B′) = {β}
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and so B′ ⊆ Cβ . Since B′ ∩A′ 6= ∅, B′ meets A at more than its endpoints. Thus
no arc meeting A only at its endpoints meets A′, contradicting our assumption
about A. Thus Eτ has property N . �

Theorem 22. Let τ be a Γ-acceptable sequence. Then the following hold:

(1) For ε > 0 there exists Nε ∈ N such that if x, y ∈ Eτ and x�Nε ∼ y�Nε then
d(x, y) < ε.

(2) For N ∈ N, there exists δN such that if x, y ∈ Eτ with d(x, y) < δN , then
x�N ∼ y�N .

Proof. First, let us prove (1). Suppose to the contrary, that there exists ε > 0 such
that for each n ∈ N there exists xn, yn ∈ Eτ with xn�n ∼ yn�n and d(xn, yn) ≥ ε.

Since Eτ has Property N, by Theorem 21, let G be a finite collection of nonde-
generate subcontinua of Eτ such that every subcontinuum of Eτ with diameter at
least ε/2 contains an element of G.

For each pair xn, yn, let C(xn) and C(yn) be the subcontinua guaranteed in
Lemma 18. Since d(xn, yn) ≥ ε, the diameter of one of these subcontinua must be
at least ε/2. Without loss of generality, assume that C(xn) has diameter at least
ε/2. Since there are finitely many elements of G and infinitely many C(xn), there
exists an element G ∈ G such that G ⊆ C(xn) for infinitely many n ∈ N.

In particular, for all n ∈ N there exists in ∈ {0, 1} with σn(G) ⊆ Sin . Fur-
thermore, since G is uncountable, {g ∈ G : σn(g) ∈ Sin} = {g ∈ G : gn = in} is
uncountable. This violates the unique itinerary property of Eτ , giving us a contra-
diction.

For (2), let N ∈ N. Observe that Pω is dense in Eτ . Consider the open cover
B = {Bβ�N : β ∈ Pω}. Since Eτ is compact, let B′ be a finite subcover and
let δN > 0 the Lebesgue number for this finite subcover. Then for x, y ∈ Eτ
with d(x, y) < δN , there exists z ∈ Pω such that x, y ∈ Bz�N . This implies that
{x�N , y�N} ⊆ {z�N , s0(z)�N , s1(z)�N} and hence x�N ∼ y�N . �

3. Shadowing

In this section we prove that σ has shadowing on Eτ . We will use this fact in the
next section where we characterize ω-limit sets. First, let us recall what it means
for a map to have shadowing.

Definition 23. A map f : X → X has shadowing provided that for each ε > 0
there exists δ > 0 such that if (xi) is a δ-pseudo-orbit for f then there exists a point
y ∈ X such that for all i, d(f i(y), xi) < ε.

Now, we begin with a technical lemma about the arrangement of points in Pω.

Lemma 24. Let τ be a Γ-acceptable sequence with period p. Let x ∈ Pn−1 and
z ∈ Pk with K(σn(x)�S) ∩ K(σn(z)�S) 6= ∅. If S + n > k + p and S > p, then
σn(x) = σn(z).

Proof. Let x, z, n, S as in the statement of the Lemma. Let m = max{n, k + 1}.
Then S + n ≥ m+ p and m ≥ n. Since

K(σn(x)�S) ∩K(σn(z)�S) 6= ∅,
we also have

K(σm(x)�p) ∩K(σm(z)�p) 6= ∅.
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x

y

z

n

m

n+ S

Figure 1. Schematic of x and z, with y ∈ K(σn(x)�S) ∩K(σn(z)�S).

Since x, z ∈ Pm−1, there exist i, j ∈ N with σm(x) = σi(τ) and σm(z) = σj(τ).
Since both σm(x) and σm(z) are periodic with period p, it follows that for all i ∈ N

K(σm(x)�i) ∩K(σm(z)�i) 6= ∅.
Since τ is Γ-acceptable, in fact we have σm(x) = σm(z). If m = n, we are done.

Otherwise, m = k + 1. But in this case, we have

K(σn(x)�(k+1−n)) ∩K(σn(z)�k+1−n) 6= ∅

and σk+1(x) = σk+1(z). Combining these agreements, we see that σn(x) = σn(z).
�

Now we are ready to prove shadowing on Eτ .

Theorem 25. Let τ be a Γ-acceptable sequence. Then the map σ on Eτ has shad-
owing.

Proof. Let τ = τ1τ2 · · · τp−1∗ be a Γ-acceptable sequence. Let ε > 0 and choose Nε
according to Lemma 22. Fix M = Nε + 4p+ 2 and choose R = M + 1. Let δR > 0
as in Lemma 22.

Let (xi) be a δR-pseudo-orbit in Eτ . Thus, for all i ∈ N there exists z ∈ Pω with
{σ(xi)�R, x

i+1�R} ⊆ K(z�R).
To construct a point w which ε-shadows (xi), we wish to first define (possibly

finite) sequences (zj) in Eτ , (mj) ∈ N∪{∞} and (fj) ∈ N∪{∞} with the following
properties:

(1) For each j, mj is the greatest element of N ∪ {∞} for which there exists
z ∈ Eτ satisfying xi�M ∈ K(σi(z)�M ) for mj−1 < i ≤ mj .

(2) zj satsifies the above property.
(3) For each j with fj <∞, zj ∈ Pfj \ Pfj−1.
(4) sup{mj} =∞.
(5) For all j, fj ≤ mj

(6) If mj <∞, then mj +Nε + 1 < fj+1

Let us assume that we have such a sequence and construct our shadowing point.
For each j ∈ N with mj finite, mj ≤ mj +Nε + 1 < fj+1 and so there is a unique
nj ∈ {0, 1} such that σmj+1(snj (z

j)�Nε) = zj+1�Nε .
Now, define w as follows. For i ∈ N choose j ∈ N with mj−1 < i ≤ mj . If

mj < ∞, define ŵi = snj (z
j)i. If mj = ∞, let ŵi = zji and ŵ = (ŵi). Then,

let w = χΓ
τ (ŵ). That w shadows (zi) is not difficult to see. Pick k ∈ N. By

construction, if mj−1 < k ≤ mj , then xk�Nε and σk(w)�Nε are both elements of

K(σk(zj)�Nε , and thus xk�Nε ∼ σ
k(w)�Nε , and so d(xk, σk(w)) < ε.

Now, let us construct the required sequences.
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zj−1

zj

zj+1

fj−1 mj−1

fj mj

fj+1

Nε

Nε

Figure 2. Schematic of zj−1, zj and zj+1

First, we define z1 and m1 as follows. Consider the set Z1 containing all m ∈
N ∪ {∞} for which there exists z ∈ Eτ with xi�M ∈ K(σi(z)�M ) for i ≤ m. Notice
that this collection is not empty, as x1 ∈ Eτ satisfies the property for m = 1. Let
m1 be the supremum of these m. We will see that it is actually attained.

Suppose that there does not exists a column f for which {xf−ii : 0 ≤ i ≤ M}
contains more than one element. Then z1 = χΓ

τ ((xi0)i∈ω) satisfies the required
property for m1 =∞ and f1 =∞.

Otherwise, let f be the first column for which {xf−ii : 0 ≤ i ≤ M} is not
a singleton. Then any z ∈ Eτ satisfying the property belongs to Pf or else has

m ≤ f . However, z = x1
0x

2
0 · · ·x

f−1
0 ∗ τ is an element of Pf with m ≥ f , so we

need only consider elements of Pf in our argument. As there are only finitely many
elements of Pf , define z1 ∈ Pf that attains m1.

Let f1 ∈ N minimal such that z1 ∈ Pf1 . We want f1 ≤ m1. To see this, suppose
that f1 > m1, and let z∗ ∈ Pω with {σ(xm1)�R, x

m1+1�R} ⊆ K(z∗�R). Then we
can easily see that z = x1

0x
2
0 · · ·x

m1
0 z∗ satisfies xi�M ∈ K(σi(z)�M ) for i ≤ m1 + 1,

contradicting maximality of m1. Thus f1 ≤ m1 as desired.
Now, let j ∈ N and suppose that fj ≤ mj < ∞ and zj have been defined. We

will now define mj+1, z
j+1 and fj+1.

Consider the set Zj+1 containing all m ∈ N ∪ {∞} for which m > mj and
there exists z ∈ Eτ with xi�M ∈ K(σi(z)�M ) for mj < i ≤ m. As before, let
mj+1 ∈ N ∪ {∞} be the supremum over such m.

Observe that if there are no columns f greater than mj for which {xf−ii : 0 ≤
i ≤M} contains more than one element, then the point zj defined by χΓ

τ ((xi0)∞i=0)
satisfies the required property with mj+1 =∞ and fj+1 =∞.

Otherwise, an argument identical to that for the j = 1 case, we can find fj+1 ≤
mj+1 with zj+1 ∈ Pfj \ Pfj+1−1 which attains mj+1.

Thus we can construct our sequences (mj), (zj) and (fj). Since mj < mj+1

unless mj =∞, we see sup{mj} =∞. All that remains is to verify that mj +Nε +
1 < fj+1

Let j ∈ N and suppose that fj+1 ≤ mj +Nε + 1.
Since (xi) is a δR-pseudo-orbit, there exists z∗ ∈ Pω with

{σ(xmj )�R, x
mj+1�R} ⊆ K(σmj+1(z)�N ).

In particular, since M < R we then have

σ(xmj )�M−1 ∈ K(σmj+1(z∗)�M−1) ∩K(σmj+1(zj)�M−1).
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zj

xmj

z∗

xmj+1

zj+1

fj mj

mj + 1

mj +Nε + 1 mj +M − 1

mj +M − 2p− 1fj+1

Figure 3. Schematic for zj , zj+1 under the assumption fj+1 ≤
mj +Nε + 1.

Suppose that z∗ ∈ Pmj+M−2p−1. Then zj and z∗ satisfy the hypotheses of

Lemma 24, and so σmj+1(zj) = σmj+1(z∗)
As we also have xmj+1�M−1 ∈ K(σmj+1(z∗)�M−1) ∩K(σmj+1(zj+1)�M−1), ap-

plying Lemma 24 to z∗ and zj+1 gives us σmj+1(zj+1) = σmj+1(z∗) = σmj+1(zj).
As such, we see that zj will actually satisfy xi�M ∈ K(σi(zj)�M ) for mj−1 < i ≤
mj+1, contradicting our choice of mj .

Otherwise, we have that z∗ /∈ Pmj+M−2p−1. In this case, we have

K(σmj+1(z∗)�Nε+2p+1) = {σmj+1(z∗)�Nε+2p+1}.
This then gives us that

σ(xmj )�Nε+2p+1 ∈ K(σmj+1(zj)�Nε+2p+1) ∩K(σmj+1(zj+1)�Nε+2p+1).

Here, we apply Lemma 24 to zj and zj+1 and conclude that σmj+1(zj+1) =
σmj+1(zj). As such, we again see that zj will actually satisfy xi�M ∈ K(σi(zj)�M )
for mj−1 < i ≤ mj+1, contradicting our choice of mj .

In either case, we have arrived at a contradiction, so it must be the case that
mj +Nε + 1 < fj+1 as requires. �

As an immediate corollary due to Theorem 13, we have the following:

Corollary 26. Let c ∈ C and suppose that fc(z) = z2 + c has an attracting or
parabolic periodic point and kneading sequence τ which is not an n-tupling. Then
the map fc has shadowing on Jc.

4. Classification of ω-limit sets

In this section we use the shadowing result of the previous section to prove that
a set R is an ω-limit set of a point in Jc if, and only if it is ICT.

Definition 27. A set Λ ⊆ X is internally chain transitive (ICT) for f : X →
X provided that for all ε > 0 and for all x, y ∈ Λ, there exists a finite ε-pseudo-orbit
in Λ from x to y.

It is well known that ω-limit sets are internally chain transitive [8]. But the
converse is not true for every space, [3].

Theorem 28. Let τ be a Γ-acceptable sequence. Then a nonempty closed subset
of Eτ is an ω-limit set if and only if it is ICT.
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Proof. As mentioned above, we need only demonstrate that every nonempty closed
internally chain transitive set Λ is an ω-limit set.

To that end, let Λ ⊆ Eτ be nonempty, closed and internally chain transitive.
Since Λ is closed and hence compact, for each n ∈ N let {yn1 , . . . ynkn} ⊆ Λ be a set

which 2−n covers Λ. As Λ is internally chain transitive, for each n ∈ N, we can
find a 2−n pseudo-orbit in Λ through {yn1 , . . . ynkn , y

n+1
1 }. By concatenating these

pseudo-orbits, we have a sequence (xi) in Λ with the following properties.

(1) For all n ∈ N, {xi : i ≥ n} is dense in Λ.
(2) For all ε > 0, there exists n ∈ N such that (xi)i≥n is an ε-pseudo-orbit.

In ordert to construct a point w with Λ = ω(w), we will mimic the construction
in the previous theorem with one exception. Rather than fixing ε and Nε at the
outset, we will allow them to increase as we proceed.

First, for each k ∈ N, let Nk ∈ N, Mk = Nk + 4p + 2 and Rk = Mk maximal
such that (xi)i≥k is a δRk -pseudo-orbit. Observe that (Nk) is non-decreasing and
tends to ∞.

Now, we will want (possibly finite) sequences (zj) in Eτ , (mj) ∈ N ∪ {∞},
(fj) ∈ N ∪ {∞} with the following properties:

(1) For each j, mj is the greatest element of N ∪ {∞} for which there exists
z ∈ Eτ satisfying xi�Mi

∈ K(σi(z)�Mi
) for mj−1 < i ≤ mj .

(2) zj satsifies the above property.
(3) For each j with fj <∞, zj ∈ Pfj \ Pfj−1.
(4) sup{mj} =∞.
(5) For all j, fj ≤ mj

(6) If mj <∞, then mj +Nmj + 1 < fj+1

The existence of such sequences is guaranteed by the previous proof by replacing
Nε, M and R with the appropriate Ni, Mi and Ri. In cases in which two different
indices are used, simply use the lesser of the two options.

Now, define w as follows. For i ∈ N choose j ∈ N with mj−1 < i ≤ mj . If

mj < ∞, define ŵi = snj (z
j)i. If mj = ∞, let ŵi = zji and ŵ = (ŵi). Then, let

w = χΓ
τ (ŵ).

Let ε > 0 and Nε ∈ N by Lemma 22. Choose K ∈ N such that if k ≥ K,
Nk ≥ Nε. Then for k ≥ K, there exists j ∈ N with mj−1 < k ≤ mj , and we see
that xk�Nk and σk(w)�Nk are both elements of K(σk(zj)�Nk . Since Nk ≥ Nε, we

have d(xk, σk(w)) < ε.
Thus, for all ε > 0, there exists K such that σK(w) ε-shadows (xi)i≥K . Imme-

diately, we see that for all ε > 0, ω(w) ⊆ Bε(Λ) and since Λ is closed, we have
ω(w) ⊆ Λ.

Finally, let y ∈ Λ and let ε > 0. Fix K such that σK(w) ε/2-shadows (xi)i≥K .
By construction of (xi), there exists a subsequence (ni) such that n1 ≥ K and
(xni) ⊆ Bε/2(y). Then σni(w) ∈ Bε(y) for all i ∈ N, and so ω(w) ∩ Bε(y) 6= ∅.
Since this holds for all ε > 0 and ω(w) is closed, y ∈ ω(w).

Thus ω(w) = Λ as desired. �

As an immediate corollary, once again applying Theorem 13, we have the follow-
ing result about Julia sets.
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Corollary 29. Let c ∈ C and suppose that fc(z) = z2 + c has an attracting or
parabolic periodic point and kneading sequence τ which is not an n-tupling. Then
a nonempty closed subset of Jc is an omega limit set if and only if it is ICT.
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