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Abstract. In this paper, we develop a sufficient condition for the inverse limit

of upper semi-continuous functions to be an indecomposable continuum. This
condition generalizes and extends those of Ingram and Varagona. Additionally,

we demonstrate a method of constructing upper semi-continuous functions

whose inverse limit has the full projection property.

1. Introduction

A topological space X is a continuum if it is a nonempty compact, connected,
metric space. Unless otherwise specified, all spaces in this paper are assumed to
be continua. For a continuum X, we denote the collection of nonempty compact
subsets of X by 2X . A continuum Y which is a subset of X is a subcontinuum of
X. For brevity, we will use Y EX to indicate that Y is a subcontinuum of X.

If X and Y are continua, a function f : X → 2Y is upper semi-continuous at x
provided that for all open sets V in Y which contain f(x), there exists an open set
U in X with x ∈ U such that if t ∈ U , then f(t) ⊆ V . If f : X → 2Y is upper
semi-continuous at each x ∈ X, we say that f is upper semi-contnuous (usc). A
usc function f : X → 2Y is called surjective provided that for each y ∈ Y , there
exists x ∈ X with y ∈ f(x).

The graph of a function f : X → 2Y is the subset G(f) of X × Y for which
(x, y) ∈ G(f) if and only if y ∈ f(x). Ingram and Mahavier showed that a function
f : X → 2Y is usc if and only if G(f) is closed in X×Y [4]. This condition is easier
to verify than the definition, and will be used frequently throughout the paper. As
a consequence, it is easy to check that if f : X → 2Y is usc and surjective, then
the inverse of f , (f−1 : Y → 2X) defined by x ∈ f−1(y) if and only if y ∈ f(x) is
well-defined and usc.

As a generalization of the well-studied and well-understood theory of inverse
limits on continua, Ingram and Mahavier introduced the notion of inverse limits
with set-valued functions [4, 5].

Definition 1. Let X1, X2, . . . be a sequence of continua and for each i ∈ N, let
fi : Xi+1 → 2Xi be an upper semi-continuous function. The inverse limit of the
pair {Xi, fi} is the set

lim←−{Xi, fi} = {(xi)∞i=1 : xi ∈ fi(xi+1) for all i ∈ N}

with the topology inherited as a subset of the product space Π∞i=1Xi.

2010 Mathematics Subject Classification. 54F15, 54D80, 54C60.
Key words and phrases. inverse limits, upper semi-continuous functions, indecomposability,

full projection property.

1



2 J. P. KELLY AND J. MEDDAUGH

The spaces Xi are called the factor spaces of the inverse limit, and the usc
functions fi the bonding functions. An inverse sequence {Xi, fi} denotes sequences
Xi and fi for which fi : Xi+1 → 2Xi is a usc function. We will use πj : lim←−{Xi, fi} →
Xj to denote the restriction to lim←−{Xi, fi} of the usual projection map on

∏∞
i=1Xi.

For a subset L of the natural numbers, we will use πL to denote projection from
lim←−{Xi, fi} to Πi∈LXi. We will often use the notation [k, n] to denote the subset
of the natural numbers consisting of k, n and all natural numbers between them.

As this is a generalization of the usual notion of inverse limits with continuous
functions as bonding maps, it is natural to investigate the extent to which results
carry over into this new context. Ingram and Mahavier pioneered this inquiry [4, 5],
and many others have continued the investigation. We state some of these results
below.

Theorem 2. [4] Let {Xi, fi} be an inverse sequence. Then lim←−{Xi, fi} is non-
empty and compact.

It is well-known that if the bonding maps in an inverse sequence are continu-
ous functions, the resulting inverse limit will be connected. This is, however, not
the case in the context of usc functions. In particular, examples of non-connected
inverse limits may be found in [4, 5] among others. The following known results
indicate some sufficient conditions for an inverse limit of usc functions to be con-
nected.

Theorem 3. [4] Let {Xi, fi} be an inverse sequence and suppose that for each
i ∈ N and each x ∈ Xi+1, fi(x) is connected. Then lim←−{Xi, fi} is connected.

Theorem 4. [4] Let {Xi, fi} be an inverse sequence and suppose that for each
i ∈ N and each x ∈ Xi, f

−1
i (x) is non-empty and connected. Then lim←−{Xi, fi} is

connected.

The following theorem is as stated in [3]. A more general version can be found
in [8].

Theorem 5. [8] Suppose F is a collection of usc functions from [0, 1] to 2[0,1] such
that for every g ∈ F and x ∈ [0, 1], g(x) is connected, and that f is the function
whose graph is the union of all the graphs of the functions in F . If f is surjective
and G(f) is a continuum, then lim←− f is a continuum.

For functions defined as in this theorem, we will write, f =
⋃
g∈F g. The follow-

ing theorem will also be useful.

Theorem 6. [8] Suppose X is a compact Hausdorff continuum, and f : X → 2X

is a surjective upper semi-continuous set valued function. Then lim←− f is connected

if and only if lim←− f
−1 is connected.

In their development of connectedness theorems, Ingram and Mahavier use a
generalized notion of the graph of a function. We will use the following notation
for this idea in this paper.

Definition 7. Let {Xi, fi} be an inverse sequence. Then for k < n, define

G[k,n]{Xi, fi} = {(xi)∞i=1 ∈
∞∏
i=1

Xi : xi ∈ fi(xi+1) k ≤ i < n}
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and

G′[k,n]{Xi, fi} = {(xi)ni=k ∈
n∏
i=k

Xi : xi ∈ fi(xi+1) k ≤ i < n}.

When no ambiguity will arise, the inverse sequence will be suppressed in the nota-
tion, and we will simply write G[k,n] or G′[k,n].

It is not difficult to see that G′[k,n] is a compact subset of
∏n
i=kXi, and that

G′[n,n+1] is the graph of f−1
n . Furthermore,

G[k,n] =

k−1∏
i=1

Xi ×G′[k,n] ×
∞∏

i=n+1

Xi.

Additionally,

lim←−{Xi, fi} =

∞⋂
n=1

(
G′[1,n] ×

∞∏
i=n+1

Xi

)
=

∞⋂
n=1

(
G[1,n]

)
and

G′[k,n]{Xi, fi} = π[k,n] lim←−{Xi, fi}.
The next result appears in [4], and follows immediately from this observation.

Theorem 8. [4] Let {Xi, fi} be an inverse sequence. Then G′[1,n] is connected for

all n ∈ N if and only if lim←−{Xi, fi} is connected.

Notice that this immediately implies that for lim←−{Xi, fi} to be connected, the
graph of each bonding function must also be connected. There are many other
results concerning connectedness of a usc inverse limit. For example, Ingram and
Nall have developed some sufficient conditions in [1] and [7], respectively.

A property of considerable interest in continuum theory is that of indecompos-
ability. A continuum X is decomposable provided that there exist proper subcon-
tinua A,B of X with A ∪ B = X. A continuum which is not decomposable is
indecomposable.

There are several known results providing sufficient conditions for an inverse
limit with single-valued bonding maps to be indecomposable. The main result of
this paper is a generalization of the following well-known theorem (Theorem 2.7 of
[6]).

Definition 9. A single-valued map f : X → Y is indecomposable provided that
for any pair A,B EX with A ∪B = X, then either f(A) = Y or f(B) = Y .

Theorem 10. Let {Xi, fi} be an inverse sequence with indecomposable single-
valued bonding maps. Then lim←−{Xi, fi} is indecomposable.

A key element of the proof of this theorem is the fact that in an inverse limit
with single-valued maps, a subcontinuum K E lim←−{Xi, fi} for which πi(K) = Xi

for infinitely many i ∈ N is, in fact, equal to lim←−{Xi, fi}. This is yet another on
the long list of properties that do not hold for inverse limits with usc functions.

Definition 11. An inverse sequence {Xi, fi} has the full projection property
(fpp) provided that if K E lim←−{Xi, fi} satisfies πi(K) = Xi for infinitely many

i ∈ N, then K = lim←−{Xi, fi}.
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For examples of usc functions for which the inverse sequence fails to have fpp,
see [2] and [3].

Ingram and Varagona [2, 9] have both found conditions in which a usc inverse
sequence has indecomposable inverse limit. We state the definitions and results
below for completeness.

Ingram’s theorem is a generalization of the notion of a two-pass map. A usc
function f : X → 2Y satisfies the two-pass condition provided that there are mu-
tually exclusive connected open sets U and V of X for which f |U and f |V are

single-valued maps and f(U) = f(V ) = Y . Recall that a continuum X is a simple
n-od if there is a point p ∈ X such that X is the union of n arcs, each pair of which
has p as their only common point.

Theorem 12. [2] Let {Xi, fi} be an inverse sequence such that for all i ∈ N, Xi

is a simple n-od for some n and fi satisfies the two-pass condition. If {Xi, fi} has
fpp and lim←−{Xi, fi} is connected, then lim←−{Xi, fi} is indecomposable.

In [9], Varagona defines a class of usc functions for which the inverse limit is
indecomposable. Let a ∈ (0, 1) and let g, h : [0, 1]→ [0, 1] be single-valued functions
satisfying the following: g is non-decreasing, g(0) = 0, g(1) = a, g((0, 1)) = (0, a)
and h is non-increasing, h(0) = 1, h(1) = a, h((0, 1)) = (a, 1). A usc function f :
[0, 1]→ 2[0,1] is a steeple with turning point a provided that G(f−1) = G(g)∪G(h).

Theorem 13. [9] Let {Xi, fi} be an inverse sequence such that each fi is a steeple.
Then lim←−{Xi, fi} is indecomposable.

In fact, Varagona proves that each such inverse limit is homeomorphic to the
well-known bucket-handle continuum .

2. Indecomposable USC Functions

Our goal in this section is to generalize Theorem 10 in a way which also gen-
eralizes Theorems 12 and 13. As standing assumptions, all spaces X and Y are
continua, and all usc functions f are surjective with connected graph.

The following will be our generalization of the concept of an indecomposable
map.

Definition 14. A usc function f : X → 2Y is indecomposable provided that for
any pair A,B EG(f) with A ∪B = G(f), then either πY (A) = Y or πY (B) = Y .

This is one of several possible ways to generalize the notion of indecomposable
from functions to usc functions. It is important to note that an indecomposable
function does not necessarily result in an indecomposable inverse limit without ad-
ditional conditions (Theorem 19). The following lemma verifies that this definition
is consistent with the original.

Lemma 15. Let f : X → Y be an indecomposable single-valued function. Then
f ′ : X → 2Y defined by f ′(x) = {f(x)} is indecomposable as a usc function.

Proof. Let f : X → Y be an indecomposable function and let f ′ be defined as
stated. Notice that by construction, G(f |C) = G(f ′|C) for all subsets C of X.

Let A,BEG(f ′) with A∪B = G(f ′). Then πX(A) and πX(B) are subcontinua
of X whose union is X. Since f is indecomposable, one of f(πX(A)) or f(πX(B))
is equal to Y .
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But f ′ is single valued, so A = G(f |πX(A)) and B = G(f |πX(B)). Thus πY (A) =
f(πX(A)) and πY (B) = f(πX(A)). In particular, one of πY (A) and πY (B) is equal
to Y , and so f ′ is an indecomposable usc function. �

Indecomposability of a usc function is not difficult to check.

Example 16. The usc function f : [0, 1] → 2[0,1] with graph shown in Figure 1 is
indecomposable.

To see this, suppose that A,B E G(f) with A ∪ B = G(f). If one of A or B
contains both (0, 0) and (1, 1), then that continuum is equal to G(f), and has Y -
projection equal to Y . Otherwise, we can assume without loss that (0, 0) ∈ A and
(1, 1) ∈ B. Since A ∪B = G(f), it follows that (a, 1) belongs to one of A or B. If
it belongs to A then A contains an arc from (0, 0) to (a, 1), and so πY (A) = Y . If
(a, 1) ∈ B, then (b, 0) ∈ B as well, and so B contains an arc from (b, 0) to (1, 1),
and in this case, πY (B) = Y . Thus, one of πY (A) and πY (B) is equal to Y , and
so f is indecomposable.

0
0

1

1a b

Figure 1. An example of the graph of an indecomposable usc
function f on [0, 1].

More examples of indecomposable usc functions appear in Section 4.

Lemma 17. Let f : X → 2Y be a usc function satisfying the two-pass condition.
If X is a simple n-od for some n ∈ N, then f is indecomposable.

Proof. Let X be a simple n-od and let f : X → 2Y be a usc function satisfying the
two-pass condition. Let U and V be the mutually exclusive connected open subsets
of X on which f |U and f |V are single-valued mappings with f(U) = f(V ) = Y
that witness the two-pass condition.

Let A,BEG(f) with A∪B = G(f). Since f |U is single-valued, it is clear that if
U is contained in πX(A), then G(f |U ) ⊆ A, and hence πY (A) ⊇ πY (G(f |U )), and

so πY (A) ⊇ f(U) = Y . Similarly, if U ⊆ πX(B), or V is contained in πX(A) or
πX(B), then one of πY (A) or πY (B) is equal to Y .

Thus, to establish that f is indecomposable, we need only verify that one of U
or V is contained in one of πX(A) or πX(B). Since A∪B = G(f), and A,BEG(f),
we know that πX(A) and πX(B) are subcontinua of X whose union is equal to X.
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Since U and V are connected disjoint subsets of the n-od X, there is a point
t ∈ X for which U and V lie in different components of X \{t}. Since X is a simple
n-od, the closure of at least one of these components is an arc in X. Let I be this
arc, and suppose without loss of generality, that U ⊆ I.

Let u ∈ I be the endpoint of I distinct from t. Since A ∪ B = X, let us
assume that u ∈ A. If t ∈ A, then U ⊆ I ⊆ A. If t /∈ A, then A ⊆ I, and so
V ⊆ X \ {I} ⊆ B. If u were in B, a similar argument would hold.

Thus, f : X → 2Y is indecomposable. �

Lemma 18. Let f : [0, 1] → 2[0,1] be a steeple with turning point a. Then f is
indecomposable.

Proof. Let f be a steeple function with turning point a. Let A,B be subcontinua of
G(f) whose union is equal to G(f). If one of A or B contains both (0, 0) and (1, 0),
then that subcontinuum is in fact equal to G(f) and we are done. So, without loss
of generality, assume (0, 0) ∈ A and (1, 0) ∈ B.

Since A ∪ B = G(f), the point (a, 1) belongs to at least one of A or B. If
(a, 1) ∈ A, then A contains an arc from (0, 0) to (a, 1), and hence πY (A) = Y .
Similarly, if (a, 1) ∈ B, then πY (B) = Y . Thus f is indecomposable. �

Theorem 19. Let {Xi, fi} be an inverse sequence for which each fi is indecom-
posable. If {Xi, fi} has fpp and lim←−{Xi, fi} is connected, then lim←−{Xi, fi} is inde-
composable.

Proof. Let {Xi, fi} be an inverse sequence for which each bonding function is in-
decomposable. Furthermore, suppose that {Xi, fi} has fpp and lim←−{Xi, fi} is con-
nected.

Let A,B E lim←−{Xi, fi} with A ∪ B = lim←−{Xi, fi}. Then, for each i > 1,

the projections π{i,i+1}(A) and π{i,i+1}(B) are subcontinua of G′[i,i+1] for which

π{i,i+1}(A) ∪ π{i,i+1}(B) = G′[i,i+1]. As observed earlier, G′[i,i+1] is the graph of

f−1
i . Since fi is indecomposable, it follows that one of πi(A) or πi(B) is equal to
Xi.

Since this holds for all i > 1, it follows that for some Z ∈ {A,B}, πi(Z) = Xi

for infinitely many i ∈ N. Since {Xi, fi} has the full projection property, Z =
lim←−{Xi, fi}. Thus one of A or B is equal to lim←−{Xi, fi}, and so lim←−{Xi, fi} is
indecomposable. �

Notice that by Lemma 17, Theorem 12 is a corollary of this theorem. We will
see shortly that Theorem 13 is also a corollary of this theorem.

Theorem 10 is sometimes stated as a characterization of indecomposable con-
tinua, in the sense that every indecomposable continuum can be written as an
inverse limit of an inverse sequence with indecomposable single-valued maps. This
follows immediately from the facts that the identity map on an indecomposable
continuum is indecomposable, and that lim←−{X, idX} is homeomorphic to X. In
light of Lemma 15, a similar statement holds for usc functions.

Corollary 20. A continuum X is indecomposable if and only if there exists an
inverse sequence {Xi, fi} with indecomposable usc bonding functions and fpp for
which X ∼= lim←−{Xi, fi}.

That Theorem 13 is a corollary of Theorem 19 is not so immediate. To see this,
we will establish that inverse sequences {Xi, fi} for which each fi is a steeple all
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have fpp and connected inverse limits. That these inverse limits are continua is
straightforward.

Lemma 21. Let {Xi, fi} be an inverse sequence for which each fi is a steeple.
Then lim←−{Xi, fi} is connected.

Proof. If fi is a steeple, then there is a nonincreasing map g : [0, 1] → [0, 1] and a
nondecreasing map h : [0, 1]→ [0, 1] with G(f−1

i ) = G(g)∪G(h). It follows that for
all x ∈ [0, 1], f(x) is connected. So, by Theorem 3, lim←−{Xi, fi} is connected. �

To see that an inverse sequence of steeple functions has fpp requires significantly
more work. The next section is devoted to developing conditions which guarantee
that an inverse sequence of usc functions has fpp. Additionally, these results will
allow us to construct examples of an inverse sequence {Xi, fi} with lim←−{Xi, fi} an
indecomposable continuum to which neither Theorem 12 nor Theorem 13 apply.

3. The Full Projection Property

Recall that given an inverse sequence {Xi, fi} where each fi : Xi+1 → 2Xi is an
upper semi-continuous set-valued function, the notation G[1,n] refers to the subset

of
∏∞
i=1Xi where xi ∈ fi(xi+1) for all 1 ≤ i < n. When we wish to discuss a similar

set but as a subset of
∏n
i=1Xi, we use the notation G′[1,n]. Specifically,

G′[1,n] = {(xi)ni=1 ∈
n∏
i=1

Xi : xi ∈ fi(xi+1), 1 ≤ i < n}.

Recall that a continuum X is irreducible between a and b provided that no proper
subcontinuum of X contains both a and b. Given two subsets A and B of X, we
say that X is irreducible between A and B provided that no proper subcontinuum
of X intersects both A and B.

Theorem 22. Let {Xi, fi} be an inverse sequence where for each i ∈ N, fi :
Xi+1 → 2Xi is usc and lim←−{Xi, fi} is a continuum. If for each n ∈ N, there exist

points a, b ∈ Xn, so that G′[1,n] is irreducible between the sets

{(xi)ni=1 ∈ G′[1,n] : xn = a} and {(xi)ni=1 ∈ G′[1,n] : xn = b},

then {Xi, fi} has fpp.

Proof. Let H E lim←−{Xi, fi} with πi(H) = Xi for infinitely many i ∈ N. Let j ∈ N
such that πj(H) = Xj . Choose a, b ∈ Xj such that G′[1,j] is irreducible between the
sets

{(xi)ji=1 ∈ G
′
[1,j] : xj = a} and {(xi)ji=1 ∈ G

′
[1,j] : xj = b}.

Since πj(H) = Xj , it contains both a and b, so the continuum π[1,j](H) must
intersect both of

{(xi)ji=1 ∈ G
′
[1,j] : xj = a} and {(xi)ji=1 ∈ G

′
[1,j] : xj = b}.

Therefore π[1,j](H) = G′[1,j], and hence π[1,k](H) = G′[1,k] for all 1 ≤ k ≤ j.
Since this holds for all j ∈ N for which πj(H) = Xj , and there are infinitely

many such j, it follows that π[1,k](H) = G′[1,k] for all k ∈ N. Therefore, H =

lim←−{Xi, fi}. �



8 J. P. KELLY AND J. MEDDAUGH

Corollary 23. Let {Xi, fi} be an inverse sequence where for each i, fi : Xi+1 →
2Xi is usc. Suppose that for each n ∈ N, G′[1,n] is an arc, and whenever (ai)

n
i=1 and

(bi)
n
i=1 are the end points of G′[1,n], fi(ai+1) = {ai} and fi(bi+1) = {bi} for each

1 ≤ i < n. Then lim←−{Xi, fi} is a continuum with fpp.

Proof. We need only check that such an inverse sequence will satisfy the conditions
of Theorem 22. Notice that since each G′[1,n] is an arc, Theorem 8 guarantees that

lim←−{Xi, fi} will be a continuum.

Given n ∈ N, let (ai)
n
i=1 and (bi)

n
i=1 be the endpoints of G′[1,n]. By assumption,

fi(ai+1) and fi(bi+1) are single valued for each 1 ≤ i < n. Therefore, the only point
in G′[1,n] which has an as the nth coordinate is (ai)

n
i=1, and likewise for bn, so since

G′[1,n] is irreducible between its endpoints, it will be irreducible between the sets

{(xi)ni=1 ∈ G′[1,n] : xn = an} and {(xi)ni=1 ∈ G′[1,n] : xn = bn}.

�

Corollary 24. Let f : [0, 1] → 2[0,1] be usc with the property that f(0) and f(1)
are both single-valued, and f(0), f(1) ∈ {0, 1}. Then if for each n ∈ N, G′[1,n] is an

arc with endpoints (ai)
n
i=1 and (bi)

n
i=1 where ai, bi ∈ {0, 1} for each i = 1, . . . , n,

then lim←− f is a continuum with fpp.

The following lemma appears in [3].

Lemma 25. [3] Suppose (fi)
∞
i=1 is a sequence of set-valued functions such that

fi : [0, 1] → 2[0,1] for each positive integer i. If n ∈ N, then G′[1,n+1] = {(xi)n+1
i=1 ∈

[0, 1]n+1 : (xi)
n
i=1 ∈ G′[1,n] and xn+1 ∈ f−1

n (xn)}.

Lemma 26. Let g1, . . . , gk : [0, 1]→ [0, 1] be continuous functions such that

(1) g1(0) = 0 and g1(x) > 0 for all 0 < x ≤ 1,
(2) gk(1) = 1 and gk(x) < 1 for all 0 ≤ x < 1, and
(3) for odd j, gj(1) = gj+1(1), and gj(x) < gj+1(x) for all 0 ≤ x < 1, and for

even j, gj(0) = gj+1(0), and gj(x) < gj+1(x) for all 0 < x ≤ 1,

then if f = (g1∪· · ·∪gk)−1, then f : [0, 1]→ 2[0,1] is usc, and for each n ∈ N, G′[1,n]

is an arc with endpoints (0, 0, . . . , 0) and (1, 1, . . . , 1). Thus lim←− f is a continuum
with fpp.

Proof. For each 1 ≤ j ≤ k, G(gj) is an arc with endpoints (0, gj(0)) and (1, gj(1)).
Moreover, for each 1 ≤ i, j ≤ k, G(gi) ∩ G(gj) 6= ∅ if and only if |i − j| ≤ 1,
and G(gj) ∩ G(gj+1) = (1, gj(1)) for odd j and G(gj) ∩ G(gj+1) = (0, gj(0)) for
even j. Thus G(g1 ∪ · · · ∪ gk) is an arc from (0, 0) to (1, 1), and since G′[1,2](f) =

G(g1 ∪ · · · ∪ gk), it is an arc from (0, 0) to (1, 1) as well.
Suppose that G′[1,n] is an arc from (0, 0, . . . , 0) to (1, 1, . . . , 1) for some n ∈ N. By

Lemma 25, G′[1,n+1] = {(xi)n+1
i=1 ∈ [0, 1]n+1 : (xi)

n
i=1 ∈ G′[1,n] and xn+1 ∈ f−1

n (xn)}.
Now f−1 = g1 ∪ · · · ∪ gk, so define for each j = 1, . . . , k, the function hj : G′[1,n] →
G′[1,n+1] by hj((xi)

n
i=1) = (x1, . . . , xn, gj(xn)), then each hj is a homeomorphism

onto its image, and G′[1,n+1] = h1(G′[1,n]) ∪ · · · ∪ hk(G′[1,n]).

Since each hj is a homeomorphism, each hj(G
′
[1,n]) is an arc, and its endpoints

are (0, . . . , 0, gj(0)) and (1, . . . , 1, gj(1)), and hj+1(G′[1,n]) is an arc whose endpoints
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are (0, . . . , 0, gj+1(0)) and (1, . . . , 1, gj+1(1)). Then from property 2, if j is odd,
these arcs will intersect only at their common endpoint

(1, . . . , 1, gj+1(1)) = (1, . . . , 1, gj(1)),

and if j is even then the arcs will intersect only at their common endpoint

(0, . . . , 0, gj+1(0)) = (0, . . . , 0, gj(0)).

Thus, G′[1,n+1] is an arc with endpoints (0, 0, . . . , 0) and (1, 1, . . . , 1). Thus, by

induction, the hypotheses of Corollary 24 are met, and so lim←− f is a continuum
with fpp. �

In this last theorem, notice that if Condition 2 were changed to say that gk(0) = 1
and gk(x) < 1 for all 0 < x ≤ 1, then nothing would change except that G′[1,n] would

instead be an arc from (0, 0, . . . , 0) to (0, 0, . . . , 0, 1). Or, if Conditions 1 and 2 were
changed so that g1(1) = 0 and gk(0) = 1, then for even n, G′[1,n] would be an arc

from (0, 1, 0, 1, . . . , 0, 1) to (1, 0, 1, 0, . . . , 1, 0), and for odd n, it would be an arc
from (0, 1, 0, 1, . . . , 0) to (1, 0, 1, 0, . . . , 1). Lastly, if g1(1) = 0 and gk(1) = 1, then
each G′[1,n] would be an arc from (1, 1, . . . , 1, 0) to (1, 1, . . . , 1).

Also, notice that Condition 3 in the theorem is equivalent to saying that the
graph of g1 ∪ · · · ∪ gk is an arc from (0, 0) to (1, 1).

In light of these observations, we have the following more general version of the
theorem.

Theorem 27. Let a, b ∈ {0, 1} (not necessarily distinct), and let g1, . . . , gk :
[0, 1]→ [0, 1] be continuous functions such that

(1) g1(a) = 0 and g1(x) > 0 for all x 6= a,
(2) gk(b) = 1 and gk(x) < 1 for all x 6= b, and
(3) the graph of g1 ∪ · · · ∪ gk is an arc from (a, 0) to (b, 1),

then if f = (g1 ∪ · · · ∪ gk)−1, then for each n ∈ N, G′[1,n] is an arc, and lim←− f is a

continuum with fpp.

The proof of this theorem would consist of separate cases for each combination
of a and b in {0, 1}, and the proof of each case would be virtually identical to the
proof of Lemma 26.

The following theorem is a generalization of the above results. It will allow for
the construction of more complicated usc functions with fpp.

Theorem 28. Let Λ ⊂ [0, 1] be a closed set containing 0 and 1. Let Λ′ be the set of
limit points of Λ, and suppose that Λ\Λ′ is dense in Λ. Let {gλ}λ∈Λ be a collection
of continuous functions such that for each λ ∈ Λ, gλ : [0, 1] → [0, 1]. Suppose the
collection of functions satisfies the following:

(1) 0 ∈ gλ([0, 1]) if and only if λ = 0 and 1 ∈ gλ([0, 1]) if and only if λ = 1,
(2) if g−1

0 (0) either contains more than one element or contains any element
other than 0 or 1, then 0 is a limit point of Λ,

(3) if g−1
1 (1) either contains more than one element or contains any element

other than 0 or 1, then 1 is a limit point of Λ,
(4) if λ, µ ∈ Λ with λ < µ, then gλ(x) < gµ(x) for all x ∈ (0, 1), and G(gλ) ∩

G(gµ) 6= ∅ if and only if (λ, µ) ∩ Λ = ∅,
(5) if (λi)i∈N is a sequence of points in Λ and λi → µ as i→∞, then gλi

→ gµ
pointwise as i→∞.
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Then if f =
⋃
λ∈Λ g

−1
λ , then lim←− f is a continuum with fpp.

Proof. From Theorem 6, we have that lim←− f will be a continuum if and only if

lim←− f
−1 is a continuum, and from Theorem 5 we have that lim←− f

−1 will be a con-

tinuum if and only if G(f−1) = G(
⋃
λ∈Λ gλ) is connected. To see that G(f−1)

is connected, suppose that G(f−1) = A ∪ B where A and B are disjoint non-
empty closed sets. Since for each λ ∈ Λ, G(gλ) is connected, each G(gλ) must
be entirely contained in either A or B, so let A = {λ ∈ Λ : G(gλ) ⊂ A} and
B = {λ ∈ Λ : G(gλ) ⊂ B}. If there exists a separation of G(f−1) then there exists
a separation so that g0 is separated from g1, so without loss of generality, suppose
that 0 ∈ A and 1 ∈ B.

Since each gλ is continuous, then with Property 5, if g : Λ× [0, 1]→ [0, 1]× [0, 1]
is defined by g(λ, x) = (x, gλ(x)), then g is continuous. In particular, g−1(A) =
A × [0, 1], and g−1(B) = B × [0, 1] are closed sets (and disjoint), so A and B are
closed and disjoint. Since they are both subsets of the compact set [0, 1], they are
also compact, so there exists a maximum element α ∈ A and a minimum element
β ∈ B∩ (α, 1]. Thus the interval (α, β) does not intersect Λ, which from Property 4
implies that gα(x) = gβ(x) for some x ∈ [0, 1], which in turn implies that A∩B 6= ∅
which is a contradiction. Therefore, G(f) (and hence lim←− f) is connected.

Now, to appeal to Theorem 22, it must first be shown that G′[1,2] is irreducible.

Let (a, 0) and (b, 1) be points in G′[1,2]. Suppose that K is a proper subcontinuum

of G′[1,2] containing both (a, 0) and (b, 1). Then there exists λ0 ∈ Λ, z0 ∈ [0, 1] with

(z0, gλ0
(z0)) /∈ K.

Case 1: If λ0 /∈ Λ′, then G(gλ0) is an arc. Also, 0 < gλ0(z0) < 1. This is
because, gλ0(z0) could only possibly be zero if λ0 = 0, but then g−1

0 (0) would
contain multiple points meaning 0 ∈ Λ′. We are supposing λ /∈ Λ′ however, so
gλ0

(z0) > 0. Similarly, gλ0
(z0) < 1. Then from Property 4, in order for K to

contain both (a, 0) and (b, 1)–a point whose second coordinate is less than gλ0
(z0)

and a point whose second coordinate is greater than gλ0
(z0)–then K must contain

both endpoints of G(gλ0). This then means that K must contain (z0, gλ0(z0)), and
we have a contradiction.

Case 2: If λ0 ∈ Λ′, then since Λ \ Λ′ is dense in Λ, there exists a sequence
(λi)i∈N in Λ \ Λ′ converging to λ0, so (z0, gλi

(z0))→ (z0, gλ0
(z0)) as i→∞. Since

(z0, gλ0
(z0)) /∈ K and K is closed, there exists a neighborhood U of (z0, gλ0

(z0))
which is disjoint from K. Thus, there exists some j ∈ N for which λj /∈ Λ′ and
(z0, gλj (z0)) /∈ K, which then from case 1 yields a contradiction.

As we have a contradiction in either case, no such K exists, so G′[1,2] is irreducible

between the sets

{(x1, x2) ∈ G′[1,2] : x2 = 0} and {(x1, x2) ∈ G′[1,2] : x2 = 1}.

Now, fix n ∈ N, and suppose that G′[1,n] is irreducible between the sets

{(xi)ni=1 ∈ G′[1,n] : xn = 0} and {(xi)ni=1 ∈ G′[1,n] : xn = 1}.

For each λ ∈ Λ, define hλ : G′[1,n] → G′[1,n+1] by

hλ((xi)
n
i=1) = (x1, x2, . . . xn, gλ(xn)).
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The map hλ is a continuous injection, and if we define Gλ = hλ(G′[1,n]), by Lemma
25,

G′[1,n+1] =
⋃
λ∈Λ

Gλ

As in the proof of Lemma 26, each hλ is a homeomorphism onto its range, and
hence, for each λ, Gλ is irreducible between the sets

Gλ(0) = {(xi)n+1
i=1 ∈ G

′
[1,n+1] : xn = 0, xn+1 = gλ(0)}

and

Gλ(1) = {(xi)n+1
i=1 ∈ G

′
[1,n+1] : xn = 1, xn+1 = gλ(1)}.

It is worth noting that these sets are π−1
n (0) ∩Gλ and π−1

n (1) ∩Gλ respectively
where πn : G′n+1 → [0, 1] is projection onto the nth coordinate.

Now, suppose that K EG′[1,n+1] intersects both {(xi)n+1
i=1 ∈ G′[1,n+1] : xn+1 = 0}

and {(xi)n+1
i=1 ∈ G′[1,n+1] : xn+1 = 1}, and suppose that p ∈ G′[1,n+1] \ K. Then

there exists a λ0 ∈ Λ and z0 ∈ G′[1,n] with hλ0(z0) = p.

Now, consider K0 = π[n,n+1](K). Since K is connected, K0 is a connected subset
of G′[n,n+1] = G′[1,2]. In particular, K0 contains a point with second coordinate 0

and a point with second coordinate 1, and so from the base step of the induction,
we know that K0 = G′[1,2]. This means that K0 contains the points (0, gλ0

(0)) and

(1, gλ0(1)), which in turn, implies that K intersects both Gλ0(0) and Gλ0(1). As
earlier, there are two cases.

Case 1: Suppose that λ0 /∈ Λ′. Then Gλ0
\ π−1

n ({0, 1}) is open in G′[1,n+1], and

so [Gλ0
\ π−1

n ({0, 1})] ∩ K is open in K. Since K is connected, by the Boundary
Bumping Theorem [6] the closure of each component of [Gλ0 \ π−1

n ({0, 1})] ∩ K
meets the boundary of [Gλ0 \ π−1

n ({0, 1})] ∩K. But the boundary of this set in K
is precisely [Gλ0

(0) ∪Gλ0
(1)] ∩K.

In particular, the closure of each component of Gλ0
\ π−1

n ({0, 1}) ∩K meets at
least one of Gλ0

(0) and Gλ0
(1). However, at least one such component must meet

both Gλ0
(0) and Gλ0

(1), else we would have a separation of K. Let L be one such
component. Then the closure of L would be a subcontinuum of Gλ0 which meets
both Gλ0(0) and Gλ0(1). Since Gλ0 is irreducible between these two sets, it follows
that L = Gλ0

, and so p ∈ Gλ0
= L ⊆ K, contradicting our assumption that p /∈ K.

Case 2: If λ0 ∈ Λ′, let U 3 p be an open subset of G′[1,n+1] which does not meet

K. Proceeding similarly to Case 2 earlier, since U is open and λ0 ∈ Λ′, there exists
λ1 ∈ Λ\Λ′ with p1 = gλ1(z0) ∈ U . In particular, p1 /∈ K, so applying the argument
from Case 1 to p1 yields a contradiction.

Thus, K is not proper, and G′[1,n+1] must be irreducible between the sets

{(xi)ni=1 ∈ G′[1,n+1] : xn+1 = 0} and {(xi)n+1
i=1 ∈ G

′
[1,n+1] : xn+1 = 1}.

Thus, by induction, G′[1,n] satisfies the hypotheses of Theorem 22 for all n ∈ N,

so lim←− f has fpp. �

4. Examples

The purpose of this section is to demonstrate the utility of Theorem 19. To
do so, we will provide examples of usc functions on the interval [0, 1] which yield
inverse limits.
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Example 29. Let f : [0, 1]→ 2[0,1] with graph given as in Figure 1 in Section 2.
As already observed, f is an indecomposable usc function. By Theorem 27,

lim←−{[0, 1], f} is a continuum with fpp. Thus by Theorem 19, lim←−{[0, 1], f} is inde-
composable.

Notice that f does not satisfy the two-pass condition, as there are no connected
open sets on which f is single valued which map onto [0, 1]. Notice also, that f is
not a steeple, and thus neither Theorem 12 nor Theorem 13 apply to this example.
The following is another example of a usc function with indecomposable inverse
limit which does not satisfy the two-pass condition and is not a steeple.

Example 30. Let g : [0, 1]→ 2[0,1] with graph given as in Figure 2.
It is not difficult to see that g is an indecomposable usc function. In fact, the

argument is identical to those seen in Example 16 and Lemma 18. Theorem 27
again gives us that lim←−{[0, 1], g} is a continuum and has fpp. Once again, Theorem
19 tells us that it is indecomposable as well.

0

1

10 a

Figure 2. The graph of a usc function g on [0, 1] with indecom-
posable inverse limit

The following examples are constructed using Theorem 28.

Example 31. Let h : [0, 1]→ 2[0,1] with graph given as in Figure 3, i.e. the product
of the Cantor set and [0, 1], along with curves from the top of the left endpoint of
each removed interval to the bottom of its right endpoint. (Note that these curves
must be inverses of graphs of functions).

It is not difficult to see that h is an indecomposable usc function. Again, the
argument is very similar to the previous arguments. Theorem 28 (with Λ being the
union of the Cantor set and the midpoints of the deleted intervals) gives us that
lim←−{[0, 1], h} is a continuum and has fpp. Once again, Theorem 19 tells us that it
is indecomposable as well.

This next example is particularly interesting as it is nowhere single-valued.

Example 32. Let p : [0, 1]→ 2[0,1] with graph given as in Figure 4, i.e. the union of

countably many piecewise linear functions which limit to the arcs (0, 1), (0, 1
2 ), ( 1

2 , 0)
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0
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1

11
3

2
3

1
9

2
9

7
9

8
9

Figure 3. The graph of a usc function h on [0, 1] with indecom-
posable inverse limit

and (1, 0), (1, 1
2 ), ( 1

2 , 1). Notice that this usc function is nowhere single-valued. The
continuum lim←−{[0, 1], p} is indecomposable.

It is not difficult to see that p is an indecomposable usc function. Again, the
argument is very similar to the previous arguments. Theorem 28 again (in this
case Λ = {0, 1} ∪ { 1

n ,
n−1
n : n ∈ N}) gives us that lim←−{[0, 1], p} is a continuum and

has fpp. Once again, Theorem 19 tells us that it is indecomposable as well.

0
0

1

11
2

1
2

Figure 4. The graph of a usc function p on [0, 1] with indecom-
posable inverse limit
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