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I.Heston Stochastic Differential Equation

Heston Stochastic Volatility Model

Heston proposed that volatility of stock return also follows a Brownian
motion,

dS(t) = µS(t)dt + S(t)
√

y(t)dB(t)
dy(t) = κ[η − y(t)]dt + σ

√
y(t)dB̃(t)

dB(t)dB̃(t) = ρdt

where µ is the expected return of the underlying asset, κ is the rate of
reversion to the mean level of volatility y(t), η is the mean level that
y(t) reverse to and σ is the volatility of y(t). Correlation coefficient is
ρ ∈ [−1,1].
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II. Finite Difference Scheme

Heston Partial Differential Equation

Vτ =
1
2

yVxx + ρσyVxy +
1
2
σ2yVyy −

(
1
2

y − r
)

Vx + κ(η − y)Vy ,

V (x , y ,0) = max (1− ex ,0) , x ∈ R, y ∈ R+,

lim
x→−∞

V (x , y , τ) = 1, y ∈ R+, τ ∈ R+,

lim
x→∞

V (x , y , τ) = 0, y ∈ R+, τ ∈ R+,

V (x ,0, τ) = max (1− ex ,0) , x ∈ R, τ ∈ R+.

lim
y→∞

Vy (x , y , τ) = 0, x ∈ R, τ ∈ R+,
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II. Finite Difference Scheme

Traditional Approaches and Limitation

Approaches:
Central difference approximation

von Neumann method for stability analysis

Limitation:
von Neumann analysis can only be applied to Cauchy problems or
periodic boundary conditions
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II. Finite Difference Scheme

Our Approach–Mixed Derivative

Mixed Derivative Term:
Positive coefficient:

Vxy (xm, yn, τ) ≈ 1
2

(∆x ,−∆y ,− + ∆x ,+∆y ,+)V (xm, yn, τ).

Negative coefficient:

Vxy (xm, yn, τ) ≈ 1
2

(∆x ,+∆y ,− + ∆x ,−∆y ,+)V (xm, yn, τ).
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II. Finite Difference Scheme

Our Approach–Advection Terms

Positive coefficient: Forward Difference Approximation

Negative coefficient: Backward Difference Approximation
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II. Finite Difference Scheme

Semi-Discretised System

Semi-discretized system:

u′(τ) = Mu(τ) + f(τ),

The solution to (1) is

u(τ) = eτMu(0)−
∫ τ

0
e(τ−s)Mf(s)ds.
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II. Finite Difference Scheme

Definition of Stability of Semi-Discretised Systems

Definition (Stability of Semi-Discretised Systems)

The semi-discretised system (1) is stable if for every τ∗ > 0, there
exists a constant c(τ∗) > 0 such that

‖eτM‖ ≤ c(τ∗), τ ∈ [0, τ∗]. (1)

where ‖ · ‖ is an appropriate matrix norm.
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II. Finite Difference Scheme

Gerschgorin’s Circle and Exponential Behavior
Theorems

Theorem (Gerschgorin’s Circle Theorem/Brauer’s Theorem)

Let Ms be the sum of the moduli of the elements along the sth row of
matrix M excluding the diagonal element mss. Then each eigenvalue of
M lies inside or on the boundary of at least one of the circles
|λ−mss| = Ms.

Theorem (Exponential Behavior)

etA tends to 0 in certain norm hence in all norms, as t tends to +∞ , if
and only if all the eigenvalues of A have strictly negative real parts.

Theorem
For ρ ∈ [−1,1], the semi-discretised system (1) is stable.
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III. Numerical Experiments

Domain Truncation

Vτ =
1
2

yVxx + ρσyVxy +
1
2
σ2yVyy −

(
1
2

y − r
)

Vx + κ(η − y)Vy ,

V (x , y ,0) = max (1− ex ,0) , x ∈ [−X , X ], y ∈ [0, Y ],

V (−X , y , τ) = 1, y ∈ [0, Y ], τ ∈ R+,

V (X , y , τ) = 0, y ∈ [0, Y ], τ ∈ R+,

V (x ,0, τ) = max (1− ex ,0) , x ∈ [−X , X ], τ ∈ R+.

Vy (x ,Y , τ) = 0, x ∈ [−X , X ], τ ∈ R+,
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III. Numerical Experiments

Solution Surface

Figure: Price of an European put option
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III. Numerical Experiments

Convergence Surface
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Figure: Rate of convergence ρh
PW surface at T = 0.5. The figure indicates

approximately an order one rate of convergence.
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III. Numerical Experiments

Effect from Change of Scheme
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Figure: Comparison of change of schemes. Left: Before scheme change;
Right: After scheme change.
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IV. Future Work :

Future Work

Exponential Splitting and Padé Approximation
Adaptive Grids
Higher-Order Schemes
American Options Pricing and Free Boundary Problems
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V. The End

Thank You
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