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I.Introduction to Options

Call Option vs Put Option:

Call Options are contracts that give the holder the right to buy the
underlying asset by a certain date for a certain price.
Put Options are contracts that give the holder the right to sell the
underlying asset by a certain date for a certain price.
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I.Introduction to Options

Terminologies for Options:

Maturity Date of an option is the last day that the holder can
exercise the option.
Strike Price of an option is the price specified by the contract that
the holder need to pay or can get when buying or selling the
underlying asset.
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I.Introduction to Options

American Style vs European Style

American Options can be exercised at any time up to the maturity
date.
European Options can be exercised only on the maturity date.
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II. Black-Scholes (BS) Model

Black-Scholes (BS) Model

Black-Scholes Model,

dS(t)
S(t)

= µdt +
√

ydW (t) (1)

where S(t) is the stock price, µ is the drift term which represents the
expected return on stock per year and y is the fixed variance of stock
price per year. W (t) represents a Brownian motion process.
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II. Black-Scholes (BS) Model

Black-Scholes Partial Differential Equation

Let v(S, t) be the price of an option. After applying Itô’s lemma and
non-arbitrage argument to (1), we can get rid of the stochastic factor
and reach the Partial Differential Equation,

vt +
1
2

yS2vSS + rSvS − rv = 0, (2)

where r is the fixed risk-less interest rate.
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III. Drawbacks and Revisions of BS Model

Drawbacks

It is widely recognized that this classic option pricing model does not
ideally fit empirical market data. Two identified empirical features have
been under attention,

Skewed distribution with higher peak and heavier tails of the
return distribution;
The volatility smile: A plot of the implied volatility of an option with
certain life as a function of its strike price.
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III. Drawbacks and Revisions of BS Model

Revisions

Adding jumps to the model: Merson and Kou proposed
jump-diffusion models with finite-jumps etc.;
Stochastic volatility/interest rate: Heston considered stochastic
volatility; Heston, Hull, White proposed stochastic volatility and
stochastic interest rate;
Combination of jumps with stochastic volatility proposed by David
Bates.

Chong Sun CASPER @ Baylor University April 7th, 2017 9 / 40



IV. Heston Stochastic Volatility Model

Heston Stochastic Volatility Model

Heston proposed that volatility of stock return also follows a Brownian
motion,

dS(t)
S(t)

= µdt +
√

y(t)dW1(t) (3)

dy(t) = κ(η − y(t))dt + σ
√

y(t)dW2(t) (4)
cov(dW1(t),dW2(t)) = ρdt (5)

where µ as before is the expected return of the underlying asset, κ is
the rate of reversion to the mean level of volatility y(t), and σ is the
volatility of y(t). Correlation coefficient of the two Brownian motions
W1(t) and W2(t) is assumed to be ρ ∈ [−1,1].
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IV. Heston Stochastic Volatility Model

Heston Partial Differential Equation

Still by Itô’s lemma and nonarbitrage argument, we reach the partial
differential equation,

0 = vt +
1
2

yS2 ∂
2v
∂S2 + ρσyS

∂2v
∂S∂y

+
1
2
σ2y

∂2v
∂y2

+rS
∂v
∂S

+ κ(η − y)
∂v
∂y
− rv . (6)
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IV. Heston Stochastic Volatility Model

Initial Boundary Value Conditions

Here we consider European put options.
The payoff function for put option with strike price K is

v(x , y ,0) = max {K − x ,0} , x ∈ R+, y ∈ R+. (7)

We impose the following boundary conditions.

v(0, y , t) = Ke−r(T−t), y ∈ R+, t ∈ R+,

lim
x→∞

v(x , y , t) = 0, y ∈ R+, t ∈ R+,

v(x ,0, t) = e−r(T−t) max {K − x ,0} , x ∈ R+, t ∈ R+,

lim
y→∞

vy (x , y , t) = 0, x ∈ R+, t ∈ R+.
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V. Finite Difference Scheme

Coordinate Transformation

In order to solve the PDE system effectively, we introduce a new
variable as the time to expiration:τ = T − t . And further we let

x = ln
(

S
K

)
and u = erτ v

K
.
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V. Finite Difference Scheme

Coordinate Transformation

uτ =
1
2

y
∂2u
∂x2 + ρσy

∂2u
∂x∂y

+
1
2
σ2y

∂2u
∂y2 −

(
1
2

y − r
)
∂u
∂x

+ κ(η − y)
∂u
∂y
,

with the transformed initial boundary value conditions.

u(x , y ,0) = K ·max (1− ex ,0) , x ∈ R, y ∈ R+,

lim
x→∞

u(x , y , τ) = 0, y ∈ R+, τ ∈ R+,

lim
x→−∞

u(x , y , τ) = Ke−rt , y ∈ R+, τ ∈ R+,

lim
y→∞

uy (x , y , τ) = 0, x ∈ R, τ ∈ R+,

u(x ,0, τ) = Ke−rt max (1− ex ,0) , x ∈ R, τ ∈ R+.

Chong Sun CASPER @ Baylor University April 7th, 2017 14 / 40



V. Finite Difference Scheme

Traditional Approaches to Cross Derivatives

Standard central difference uxy ≈ ∆x ,0∆y ,0u to discretise the
cross derivative term;
Compact difference scheme based on central difference to
achieve fourth order approximation in space;
von Neumann analysis for stability analysis.
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V. Finite Difference Scheme

Limitations of Traditional Approaches

However, von Neumann analysis can only be applied to Cauchy
problems, partial differential equations with periodic boundary
conditions and certain Dirichlet boundary conditions.
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V. Finite Difference Scheme

Our Approach

First-order upwind-downwind scheme,

uxy ≈ ∆x,+∆y,+u for ρ ≤ 0,
uxy ≈ ∆x,−∆y,−u for ρ > 0;

Discretise the leading error term in the upwind-downwind scheme
to achieve second-order approximation;
Eigenvalue method for stability analysis.
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V. Finite Difference Scheme

Domain Truncation

For computational purpose:

Replace the domain of x by (−X ,X ) for large enough X ,
Replace the domain of y by (0,1) because of empirical evidence.

Let hx denote the uniform mesh in the x− direction and hy denote
the uniform mesh in the y− direction;
We impose grids {xm}M+1

0 and {yn}N+1
0 in x− and y− directions

respectively; We let um,n = u(xm, yn).
For stability analysis purpose, we let hy = σhx .
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V. Finite Difference Scheme

First-Order Discretisation of the Cross Derivative
Terms

When ρ ∈ [−1,0],

uxy (xm, yn) = ∆x ,+∆y ,+um,n −
hy

2
∂3um,n

∂x∂y2 −
hx

2
∂3um,n

∂x2∂y
+O(h2

x )

=
1

hxhy
(um,n − um,n+1 − um+1,n + um+1,n+1)

−
hy

2
∂3um,n

∂x∂y2 −
hx

2
∂3um,n

∂x2∂y
+O(h2

x ), (8)
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V. Finite Difference Scheme

First-Order Discretisation of the Cross Derivative
Terms Cont’d

When ρ ∈ [0,1],

uxy (xm, yn) = ∆x ,−∆y ,−um,n +
hy

2
∂3um,n

∂x∂y2 −
hx

2
∂3um,n

∂x2∂y
+O(h2

x )

=
1

hxhy
(um,n − um−1,n − um,n−1 + um−1,n−1)

+
hy

2
∂3um,n

∂x∂y2 +
hx

2
∂3um,n

∂x2∂y
+O(h2

x ) (9)
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V. Finite Difference Scheme

Second Order Discretisation of the Cross Derivative
Term

To get the second order discretisation, we use the following two first
order discretisations to approximate the leading error terms.
For ρ ∈ [−1,0],

−
hy

2
∂3um,n

∂x∂y2 ≈ −
hy

2
∆x ,+∆2

y ,0um,n, (10)

− hx

2
∂3um,n

∂x2∂y
≈ −hx

2
∆y ,+∆2

x ,0um,n. (11)
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V. Finite Difference Scheme

Second Order Discretisation of the Cross Derivative
Term

For ρ ∈ (0,1],

hy

2
∂3um,n

∂x∂y2 ≈
hy

2
∆x ,−∆2

y ,0um,n, (12)

hx

2
∂3um,n

∂x2∂y
≈ hx

2
∆y ,−∆2

x ,0um,n. (13)
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V. Finite Difference Scheme

Second Order Discretisation of the Cross Derivative
Term Cont’d

Here we only consider the case when ρ ∈ [−1,0].
The generalization to ρ ∈ (0,1] is direct.
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V. Finite Difference Scheme

Second Order Discretisation of the Cross Derivative
Term Cont’d

Substitute (12) and (13) into (8),

uxy (xm, yn) =
1

hxhy
(
1
2

um−1,n −
1
2

um−1,n+1 +
1
2

um,n−1

−um,n +
1
2

um,n+1 −
1
2

um+1,n−1 +
1
2

um+1,n)

+O(h2
x ). (14)
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V. Finite Difference Scheme

Discretisation of Diffusion, Advection and Boundary
Terms

Standard central difference for the diffusion terms,

uxx (xm, yn) ≈ ∆2
x ,0um,n (15)

uyy (xm, yn) ≈ ∆2
y ,0um,n (16)

Central difference for the advection terms,

ux (xm, yn) ≈ ∆x ,0um,n (17)
uy (xm, yn) ≈ ∆y ,0um,n (18)

Central difference for the Neumann boundary condition,

uy (xm, yN+1) ≈ ∆y ,0um,yN+1 (19)
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V. Finite Difference Scheme

Semi-Discretised System

Substitute (8)-(19) into the transformed partial differential equation, we
can get a semi-discretised system,

u′(τ) = Mu(τ) + f, (20)

u(τ) =
[
u1,1 u1,2 . . . u1,N+1 u2,1 . . . uM,N+1

]T is the
M(N + 1)× 1 vector that contains all the grid points.
M is the M(N + 1)×M(N + 1) matrix that contains the coefficients
of grid points in the semi-discretised system.
f is the M(N + 1)× 1 vector that is resulted from the
nonhomogeneous Dirichlet boundary conditions and the
Neumann boundary condition.
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V. Finite Difference Scheme

Definition of Stability of Semi-Discretised Systems

The solution to (20) is

u(τ) = eτMu(0)−M−1(I− eτM)f (21)

Definition (Stability of Semi-Discretised Systems)

The semi-discretised system (20) is stable if for every τ∗ > 0, there
exists a constant c(τ∗) > 0 such that

‖eτM‖ ≤ c(τ∗), τ ∈ [0, τ∗]. (22)

where ‖ · ‖ is appropriate matrix norm.
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V. Finite Difference Scheme

Gerschgorin’s Circle and Exponential Behavior
Theorems

Theorem (Gerschgorin’s Circle Theorem/Brauer’s Theorem)

Let Ms be the sum of the moduli of the elements along the sth row of
matrix M excluding the diagonal element mss. Then each eigenvalue of
M lies inside or on the boundary of at least one of the circles
|λ−mss| = Ms. Moreover, an eigenvalue may lie on the boundary of
one of the Gerschgorin’s circles only if it lies on the boundaries of
every Gerschgorin’s circles.

Theorem (Exponential Behavior)

etA tends to 0 in certain norm hence in all norms, as t tends to +∞ , if
and only if all the eigenvalues of A have strictly negative real parts.
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V. Finite Difference Scheme

Stability Analysis

Lemma
For ρ ∈ [−1,1], the semi-discretised system (20) is stable.

Proof:
A general equation in the semi-discretised system without influence
from boundary conditions is of the form,

u′m,n = am,num−1,n −
ρσyn

2hxhy
um−1,n−1 + bm,num,n−1

+cm,num,n + dm,num,n+1 −
ρσyn

2hxhy
um+1,n−1

+pm,num+1,n (23)

Chong Sun CASPER @ Baylor University April 7th, 2017 29 / 40



V. Finite Difference Scheme

Proof of Stability

am,n =
yn

2h2
x

+
ρσyn

2hxhy
+

1
4hx

(yn − r)

bm,n =
σ2yn

2h2
y

+
ρσyn

2hxhy
− κ(η − yn)

2hy

cm,n = −yn

h2
x
− σ2yn

h2
y
− ρσyn

hxhy

dm,n =
σ2yn

2h2
y

+
ρσyn

2hxhy
+
κ(η − yn)

2hy

pm,n =
yn

2h2
x

+
ρσyn

2hxhy
− 1

4hx
(yn − r)

Chong Sun CASPER @ Baylor University April 7th, 2017 30 / 40



V. Finite Difference Scheme

Proof Cont’d

The Gerschgorin circle corresponding to (23) is∣∣∣∣∣λm,n +
yn

h2
x

+
σ2yn

h2
y

+
ρσyn

hxhy

∣∣∣∣∣ ≤
∣∣∣∣ yn

2h2
x

+
ρσyn

2hxhy
+

1
4hx

(yn − r)

∣∣∣∣
+

∣∣∣∣∣σ2yn

2h2
y

+
ρσyn

2hxhy
− κ(η − yn)

2hy

∣∣∣∣∣
+

∣∣∣∣∣σ2yn

2h2
y

+
ρσyn

2hxhy
+
κ(η − yn)

2hy

∣∣∣∣∣
+

∣∣∣∣ yn

2h2
x

+
ρσyn

2hxhy
− 1

4hx
(yn − r)

∣∣∣∣− ρσyn

hxhy
(24)
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V. Finite Difference Scheme

Proof Cont’d

Let xm,n = Real(λm,n). Then by triangle inequality of moduli, we have,

∣∣∣∣∣xm,n +
yn

h2
x

+
σ2yn

h2
y

+
ρσyn

hxhy

∣∣∣∣∣ ≤
∣∣∣∣ yn

2h2
x

+
ρσyn

2hxhy
+

1
4hx

(yn − r)

∣∣∣∣
+

∣∣∣∣∣σ2yn

2h2
y

+
ρσyn

2hxhy
− κ(η − yn)

2hy

∣∣∣∣∣
+

∣∣∣∣∣σ2yn

2h2
y

+
ρσyn

2hxhy
+
κ(η − yn)

2hy

∣∣∣∣∣
+

∣∣∣∣ yn

2h2
x

+
ρσyn

2hxhy
− 1

4hx
(yn − r)

∣∣∣∣− ρσyn

hxhy
(25)
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V. Finite Difference Scheme

Proof Cont’d

We use the fact that hy = σhx ,

yn

2h2
x

+
ρσyn

2hxhy
=

yn

2h2
x

(
1 +

ρσhy

hx

)
=

yn

2h2
x

(1 + ρ)

≥ 0. (26)
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V. Finite Difference Scheme

Proof Cont’d

And also,

σ2yn

2h2
y

+
ρσyn

2hxhy
=

σyn

2h2
y

(
σ +

ρhy

hx

)
=

σ2yn

2h2
y

(1 + ρ)

≥ 0. (27)
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V. Finite Difference Scheme

Proof Cont’d

Thus for hx and hy small enough, we can get rid of all the absolute
values on both sides of (25). After some simple algebraic
manipulations, we have,

xm,n ≤ 0. (28)
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V. Finite Difference Scheme

Proof Cont’d

Now we can proceed to consider the influence of Neumann boundary
condition.
A general equation with influence of Neumann boundary condition is of
the form,

u′m,N+1 = am,N+1um−1,N+1 −
ρσyN+1

2hxhy
um−1,N + qm,N+1um,N

+cm,N+1um,N+1 −
ρσyn

2hxhy
um+1,N

+pm,num+1,N+1 (29)

where qm,N+1 =
σ2yn

h2
y

+
ρσyn

hxhy
while all other coefficients are defined

same as before.

Chong Sun CASPER @ Baylor University April 7th, 2017 36 / 40



V. Finite Difference Scheme

Proof Cont’d

By similar process, we can prove the Gerschgorin’s circles
corresponding to (29) also lies on the left half of complex plane.
Because the Gerschgorin’s circles corresponding to equations
with influence from Dirichlet boundary condition will locate strictly
on the left half of complex plane, we conclude that the real part of
eigenvalues of M are strictly negative.
eτM is bounded in some norm and hence in all norms by the
exponential behavior theorem. And thus the semi-discretised
system is stable.
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V. Finite Difference Scheme

Conclusion

eτM is bounded in some norm and hence in all norms by the
exponential behavior theorem. And thus the semi-discretised
system is stable.
By same argument, we can generalize the result to when
ρ ∈ (0,1] with the corresponding discretisation method.
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VII. Future Work :

Future Work

Exponential Splitting and Padé Approximation
Numerical Experiment
Nonuniform Grids
Higher-Order Compact Schemes
American Options Pricing and Free Boundary Problems
More General Principle for the Discretisation of Cross Derivative
Terms
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VIII. Questions:

Questions?

Thank You
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