
High-Performance Python-based Simulations of
Pressure and Temperature Waves in a Trace Gas

Sensor

Brian Brennan and Robert C. Kirby
Department of Mathematics

Baylor University
One Bear Place #97328
Waco, TX 76798-7328

Email: b brennan@baylor.edu, robert kirby@baylor.edu

John Zweck and Susan E. Minkoff
Department of Mathematical Sciences

University of Texas at Dallas
800 West Campbell Road

Richardson, TX 75080-3021
Email: zweck@utdallas.edu, sminkoff@utdallas.edu

Abstract—We present a coupled model of temperature and
pressure waves applicable to photoacoustic trace gas sensors.
We discretize this model with finite elements using the Python-
based FEniCS project.To validate the generated code, we observe
optimal convergence rates to a plane wave solution in one and
two dimensions. Using FEniCS’ seamless access to MPI-based
parallelism, we observe nearly-optimal speedup using four cores
of a workstation, although not beyond. Finally, we use the auto-
mated mesh adaptivity of FEniCS to optimize the computation of
heat flux along a portion of the boundary, arriving at comparable
accuracy to uniform refinement using a factor of forty fewer cells.

I. INTRODUCTION

Currently, research on trace gas sensors is focused on the
development of portable, efficient, and cost-effective sensor
technologies that can be deployed in networks for large scale
monitoring of carbon dioxide and atmospheric pollutants, as
well as for non-invasive disease diagnosis using breath analysis
[1], [2], [3]. One such trace gas sensor is the Quartz-Enhanced
Photo-Acoustic Spectroscopy (QEPAS) sensor which employs
a quartz tuning fork to detect the weak acoustic pressure
waves generated by the interaction of laser radiation with a
trace gas [4]. More specifically, QEPAS sensors are based on
the following physical mechanisms. A laser generates optical
radiation at a specific absorption wavelength of the gas to
be detected. The laser beam is directed between the tines
of the tuning fork (see Figure 1). The optical energy that is
absorbed by the trace gas is transformed into vibrational energy
of the gas molecules, generating a temperature disturbance.
If the interaction between the laser and the trace gas is
sinusoidally modulated, this temperature disturbance is in the
form of a thermal wave. In addition, vibrational to translational
energy conversion processes in the gas molecules result in the
generation of a weak acoustic pressure wave, which can be
detected by the tuning fork. To amplify the signal detected
by the tuning fork, the modulation frequency of the laser
is chosen so as to excite a resonant vibration in the tuning
fork. Finally, since quartz is a piezoelectric material, this
mechanical vibration is converted to an electric current that can
be measured. Because the entire process is linear, the measured
current is proportional to the concentration of the trace gas. In
some experimental regimes, the tuning fork can also be used

to directly detect the thermal wave via the pyroelectric effect
[5].

Fig. 1. Schematic diagram of the experimental setup for a QEPAS sensor
showing the tuning fork (the U-shaped bar with two tines), two attached wires,
and the laser source focused between the tines of the tuning fork.

To date, all mathematical models of QEPAS sensors [6],
[7], [8], [9] have included damping in the model using an ad-
hoc approach that involves making experimental measurements
using the actual tuning fork being modeled. A major goal of
our ongoing research is to develop a more realistic model
of the damping in a QEPAS sensor. The primary source of
damping is viscous damping of the fluid in a boundary layer
surrounding the tuning fork. Therefore, in this paper we begin
the development a computational model of a QEPAS sensor
that realistically incorporates the effects of viscous damping
using a parameter that depends on the physical properties of the
fluid and is independent of the particular choice of tuning fork.
The model is based on a coupled system of partial differential
equations for the acoustic pressure and the temperature of
the fluid that was derived by Morse and Ingard [10]. This
coupled system generalizes the classical acoustic wave and

heat equations.

The purpose of this paper is to develop some of the high-
performance computational tools required to compute numer-
ical solutions of the coupled pressure-temperature equations.
We verify the correctness of the numerical implementation and
study its performance using an artificial plane-wave solution.
In future work, we will further develop the model and apply
the computational tools developed here to compute solutions
of the pressure-temperature equations for a QEPAS sensor.

We employ the Python interface to FEniCS to automate the
process of solving the coupled pressure-temperature equations
using the finite element method [11]. Our simulation results
show that even in two spatial dimensions we need to invoke
high-performance linear solver tools to compute the solution
on a sufficiently fine mesh. FEniCS offers convenient access to
the PETSc, Trilinos/Epetra, and uBlas linear algebra libraries
[12], [13], [14].

Because boundary layer phenomena are expected to play
a role in the performance of the sensor, it will be important
to use a much finer mesh near the surface of the tuning fork
than away from it. To automate the mesh refinement proccess,
we make use of the automated goal-oriented error control
algorithm implemented in FEniCS, which adaptively refines
the mesh so as to minimize the error in a quantity of interest.
In this paper, we choose the quantity of interest to be a local
average of pressure or the gradient of the temperature on the
surface of the tuning fork, since these quantities determine the
vibration of the tuning fork.

II. MATHEMATICAL MODEL

The interaction of laser radiation with the trace gas gener-
ates an acoustic pressure wave, P , and a thermal disturbance,
T . To model the effects of viscous damping and thermal
conduction in the gas Morse and Ingard [10], derived a coupled
system of pressure-temperature equations which generalizes
the standard acoustic wave and heat equations. These equations
are given by

∂

∂t

(
T − γ − 1

γα
P
)
− `hc∆T = S (1a)

γ

(
∂2

∂t2
− `vc

∂

∂t
∆

)
(P − αT)− c2∆P = 0. (1b)

Here `v and `h are characteristic lengths associated with the
effects of fluid viscosity and thermal conduction, respectively,
c is sound speed, γ is the ratio of the specific heat of the gas at
constant pressure to that at constant volume, and α =

(
∂P
∂T

)
v

is
the rate of change of ambient pressure with respect to ambient
temperature at constant volume.

We model the interaction between the laser and the trace
gas using the source term, S, in equation (1a) given by

S(x, t) = C exp

(
−2[(x− xs)2 + (z − zs)2]

σ2

)
exp(−iωt) (2)

where C is a constant that is proportional to the concentration
of the trace gas to be detected, (xs, zs) are the coordinates of
the axis of the cylindrically symmetric Gaussian power profile
of the laser beam, σ is the beam width and ω is the frequency
of the periodic interaction between the laser radiation and
the trace gas. The modulation frequency, ω, is chosen so
as to excite a resonant vibration in the tuning fork. Since
S(x, t) = S(x) exp(−iωt) is periodic in time, so are the pres-
sure and temperature. Substituting P(x, t) = P (x) exp(−iωt)
and T (x, t) = T (x) exp(−iωt) into equations (1) we obtain
the coupled system of Helmholtz equations

iβω

(
T − γ − 1

γα
P

)
+ β`hc∆T = S (3a)

iγ(ω2 − `vciω∆)(P − αT)− ic2∆P = 0 (3b)

where β = α2γ2ω
γ−1 . Since complex numbers are not im-

plemented in FEniCS, we separate equations (3a) and (3b)
into real and imaginary parts. Setting T = T1 + iT2 and
P = P1 + iP2, we obtain a system of four partial differential
equations of the form Au = b, where

A =

 −β`hc∆ βω 0 −αγω2

−βω −β`hc∆ αγω2 0
αγ`vcω∆ −αγω2 −γ`vcω∆ γω2 + c2∆
αγω2 αγ`vcω∆ −(γω2 + c2∆) −γ`vcω∆

.
(4)

Note that equations (1) and (3) are valid in all spatial
dimensions. In this paper, we compute solutions in 1D, 2D,
and 3D.

III. AUTOMATING THE FINITE ELEMENT METHOD

The FEniCS Form Compiler FFC [15] automates an op-
timal stiffness matrix assembly algorithm by reading in a
variational form, written in common mathematical notation,
for just-in-time compilation. Assembling the global stiffness
matrix involves a for loop over the elements of the mesh in
which we calculate the local contribution due to each element
and then add it into the global stiffness matrix. While simple
in nature, the assembly of the stiffness matrix often takes up
a significant portion of the run time. So efficiency in the
assembly routine becomes a crucial goal, and the FEniCS
project provides both generality and efficiency.

The first step of any finite element method is to translate the
given differential equation into the corresponding variational
problem: find u ∈ V such that

a(u, v) = L(v) ∀v ∈ V̂ (5)

where V is the trial space and V̂ is the test space [16], [17].
For example, for the Poisson equation −∆u = f , the bilinear
form is defined by

a(u, v) =

∫
Ω

∇u · ∇vdx = 〈∇u,∇v〉.

This definition of the variational form can be directly
passed into the FEniCS Form Compiler in Python. The entire

finite element assembly process described above is then auto-
mated in FEniCS. In Figure 2 we see a basic example of this
code for the Poisson problem with Dirichlet conditions on the
left and right sides of the square and homogenous Neumann
conditions on the top and bottom.

from dolfin import *

Create mesh and define function space
mesh = UnitSquareMesh(32, 32)
V = FunctionSpace(mesh, "Lagrange", 1)

Define Dirichlet boundary (x = 0 or x = 1)
def boundary(x):

return x[0] < DOLFIN_EPS or x[0] > 1.0 - DOLFIN_EPS

Define boundary condition
u0 = Constant(0.0)
bc = DirichletBC(V, u0, boundary)

Define variational problem
u = TrialFunction(V)
v = TestFunction(V)
f = Expression(’exp(-(pow(x[0],2) + pow(x[1],2))’)
a = inner(grad(u), grad(v))*dx
L = f*v*dx

Compute solution
u = Function(V)
solve(a == L, u, bc)

Fig. 2. FEniCS code for the Poisson equation on a square mesh. Note that
in FEniCS code the spatial coordinates x and y are referenced with x[0] and
x[1] respectively.

For our model, the bilinear form corresponding to (4) is

a(u, v) = β`hc〈∇T1,∇v1〉+ βω〈T2, v1〉
− αγω2〈P2, v1〉 − βω〈T1, v2〉
+ β`hc〈∇T2,∇v2〉+ αγω2〈P1, v2〉
− αγ`vcω〈∇T1,∇v3〉 − αγω2〈T2, v3〉
+ γ`vcω〈∇P1,∇v3〉+ γω2〈P2, v3〉
− c2〈∇P2,∇v3〉+ αγω2〈T1, v4〉
− αγ`vcω〈∇T2,∇v4〉 − γω2〈P1, v4〉
+ c2〈∇P1,∇v4〉+ γ`vcω〈∇P2,∇v4〉

and L(v) = 〈S, v1〉.
In Figure 3 we can see that the FEniCS code for our model

closely resembles that of the basic Poisson problem.

If FEniCS is built with a parallel linear algebra back
end, such as PETSc or Trilinos, we can quickly implement
high performance tests in Python using the Message Passing
Interface (MPI). The mesh is automatically partitioned over
the processors, using tools such as Scotch or ParMetis, which
means the Python code is unchanged as we switch between
serial and parallel runs.

IV. NUMERICAL RESULTS IN SERIAL

In this section, we verify our FEniCS implementation of the
finite-element solution of the pressure-temperature equations
by comparison to a plane-wave solution of equations (3)
derived by Morse and Ingard [10]. Here we will be using a dual
eight-core Intel Xeon E5-2680 machine running at 2.7GHz

from dolfin import *

Assign values to physical parameters

Import mesh file and define boundary conditions

Define mixed function space
V = FunctionSpace(mesh, "Lagrange", 1)
W = MixedFunctionSpace([V,V,V,V])

Define variational problem
(T1,T2,P1,P2) = TrialFunction(W)
(v1,v2,v3,v4) = TestFunction(W)

S = Expression(’exp(-(pow(x[0],2) + pow(x[1],2))’)

a = (B*lh*c*inner(grad(T1),grad(v1))
+B*w*inner(T2,v1)-a*g*w*w*inner(P2,v1)
-B*w*inner(T1,v2)+B*lh*c*inner(grad(T2),grad(v2))
+a*g*w*w*inner(P1,v2)-a*g*lv*c*inner(grad(T1),grad(v3))
-a*g*w*w*inner(T2,v3)+g*lv*c*w*inner(grad(P1),grad(v3))
+g*w*w*inner(P2,v3)-c*c*inner(grad(P2),grad(v3))
+a*g*w*w*inner(T1,v4)-a*g*lv*c*inner(grad(T2),grad(v4))
-g*w*w*inner(P1,v4)+c*c*inner(grad(P1),grad(v4))
+g*lv*c*w*inner(grad(P2),grad(v4)))*dx

L = S*v1*dx

Compute solution
u = Function(W)
problem = LinearVariationalProblem(a, L, u, bcs)
solver = LinearVariationalSolver(problem)
solver.solve()
(T1,T2,P1,P2) = u.split()

Fig. 3. FEniCS code for the variational problem a(u, v) = L corresponding
to the pressure-temperature model in equations (3) with appropriate boundary
conditions defined by bcs. The mixed function space W is the Cartesian
product V × V × V × V .

with 128GB of RAM. This machine is running Linux Mint 13
(Maya). All results for plane-wave solutions are on the interval
Ω1D = [0, 0.25], the square Ω2D = [0, 0.25]× [0, 0.25] or the
cube Ω3D = [0, 0.25]× [0, 0.25]× [0, 0.25] where each length
is measured in meters.

If we assume that the pressure wave in free-space is of the
form

P (x) = eik·x, (6)

where k is the wave vector, and set S = 0 in equation (3a)
then the temperature, T , is the plane wave given by

T (x) =
iω(γ − 1)

(iω − `hck2)γα
eik·x, (7)

where k = |k|. Inserting equations (6) and (7) into equation
(3) and dividing by eik·x, we obtain a quadratic equation for
k2 whose solution is given by

k2 =
iω2

2Ωc2
1− iΥ− iγΩ∓Q

1− iγΥ
, (8)

where Ω = ω
c `h, Υ = ω

c `v and

Q =
√

(1− iΥ + iγΩ)2 − 4i(γ − 1)Ω.

The two signs in the definition of k correspond to particular
physical modes. The minus sign represents the propagational
mode while the plus sign represents the thermal mode. Here
we have chosen to work with the equations corresponding to
the propagational mode.

Most of the work up to this point has been independent of
the spatial dimension. FEniCS allows us to run the very same
code in 1D, 2D or 3D simply by changing to an appropriate
mesh and respecifying the boundary conditions. In order to
restrict our free-space plane-wave solution to a problem on a
bounded domain, we can use the exact solutions exact T1,
exact T2, exact P1, exact P2 on a given 1D, 2D or 3D
mesh to enforce the appropriate Dirichlet boundary conditions.
This is easily accomplished in FEniCS with the commands

bc1 = DirichletBC(W.sub(0), exact_T1, boundary)
bc2 = DirichletBC(W.sub(1), exact_T2, boundary)
bc3 = DirichletBC(W.sub(2), exact_P1, boundary)
bc4 = DirichletBC(W.sub(3), exact_P2, boundary)
bcs = [bc1, bc2, bc3, bc4]

where W.sub(0), W.sub(1), W.sub(2) and W.sub(3)
represent the to be approximated sub-solutions T1, T2, P1,
and P2, respectively, on the mixed vector space W.

To mimic a realistic problem, the following set of physical
parameters will be used for all tests in this paper:

`h = `v = 10−6 m
c = 300 m/s
ω = 3.3× 104 Hz
γ = 1.4

α = 8.8667 Pa/K.

Now that we have an exact solution in hand, we can
verify the accuracy of our method while also checking that
it is converging to the exact solution at the expected rate.
For polynomials of order p, we expect the error to be
O(hp+1) in L2. We will use the Multifrontal Massively
Parallel Solver (MUMPS) to solver all of our linear systems
in serial and parallel [19], [20]. MUMPS uses a variation
of Gaussian elimination to solve large, sparse linear equa-
tions. Implementing MUMPS in FEniCS requires replacing
the LinearVariationalSolver() in Figure 3 with the
following code segment.

A, b = assemble_system(aa, L, bcs)
solver = PETScLUSolver("mumps")
solver.solve(A, u.vector(), b)

First we consider the 1D problem. In Figure 4 we plot the
relative error

Relative Error(u) =
‖u− uh‖
‖u‖

, (9)

where u represents the exact solution T1, T2, P1 or P2 and
uh is the corresponding finite element solution. We see that
for piecewise linear basis functions the method is converging
quadratically. After N is about 105, the error begins to increase
slightly. We are not sure of the origin of this, but it is likely due
to round off error and ill-conditioning of the stiffness matrix.

Likewise, Figure 5 shows the method is O(h3) if we switch
to piecewise quadratic basis functions.

10
2

10
3

10
4

10
5

10
6

10
−10

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

1D Piecewise Linears

log(N)

lo
g
(e

rr
o
r)

(Avg Slope = −1.9992)

T1

T2

P1

P2

Fig. 4. log - log plot of the relative error in the solution for the 1D T1,
T2, P1, and P2 plane-wave solutions with respect to the mesh refinement
parameter N . Here we are using piecewise linear Lagrange basis functions.

10
2

10
3

10
4

10
5

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

1D Piecewise Quadratics

log(N)

lo
g
(e

rr
o
r)

(Avg Slope = −3.1483)

T1

T2

P1

P2

Fig. 5. log - log plot of the relative error in the solution for the 1D T1, T2, P1,
and P2 plane-wave solutions with respect to the mesh refinement parameter
N . Here we are using piecewise quadratic Lagrange basis functions.

In two dimensions, the matrix is much larger and the
required factorization of this matrix exhausts the available
memory. Nevertheless, Figure 6 shows that when we can
solve the 2D problem, the method converges quadratically for
piecewise linear basis functions.

As we eventually move to the full 3D problem, these same
memory constraints will become even greater and thus so does
the need for and efficient, high-performance method.

10
1

10
2

10
3

10
−3

10
−2

10
−1

10
0

2D Piecewise Linears

log(N)

lo
g
(e

rr
o
r)

(Avg Slope = −2.0238)

T1

T2

P1

P2

Fig. 6. log - log plot of the relative error in the MUMPS solution for the 2D
T1, T2, P1, and P2 plane-wave solutions with respect to the mesh refinement
parameter N . Here we are using piecewise linear Lagrange basis functions.

V. PRELIMINARY INTRA-NODE PARALLEL RESULTS

When it is built with a parallel linear algebra backend, like
PETSc or Trilinos/Epetra, FEniCS supports parallel computing
on both shared memory machines and clusters. In order to
avoid these potential complications, FEniCS has been designed
such that the same code used for serial tests can be run in
parallel using the following command.

mpirun -n 16 myprogram.py

While MUMPS is effective in serial, its major advantage
is scalability on clusters. Our goal here is to demonstrate that
FEniCS runs in MPI and to investigate possible speedup using
multiple cores on our workstation. Obtaining optimal speedup
using all cores is not likely for a direct solver, although
MUMPS will enable us to scale well to distributed memory
clusters in the near future.

In Figure 7 we can see that for the 256×256 square mesh,
the speedup ratio increases as we apply more cores. We are
even achieving almost optimal performance up to four cores
before additional processors become less and less effective.
Gaussian elimination requires quite a bit of memory so this
is to be expected. We expect to see better performance as we
move to a distributed memory cluster.

Next, we increase the size of the problem to a 512× 512
mesh. By refining the mesh, we are giving more work to each
processor which should yield better performance in terms of
speedup. In Figure 8 we see that the speedup ratio more closely
fits the optimal speedup line than it did for previous test. Also,
the curve quickly flattens out after five processors rather than
slowly curving off. This tells us that we are achieving optimal
performance for up to five cores but that MUMPS is not able
to utilize more cores on the same bus.

If we increase the problem size to a 1024 × 1024 mesh
we see in Figure 9 that the speedup ratio increases with the

1 2 3 4 5 6 7 8
1

2

3

4

5

6

7

8
2D Speedup with MUMPS

Number of Cores

S
p
e
e
d
u
p
 R

a
ti
o

(256 x 256 cell mesh)

Fig. 7. Plot of the parallel speedup ratio on the 256× 256 mesh.

1 2 3 4 5 6 7 8
1

2

3

4

5

6

7

8
2D Speedup with MUMPS

Number of Cores

S
p
e
e
d
u
p
 R

a
ti
o

(512 x 512 cell mesh)

Fig. 8. Plot of the parallel speedup ratio on the 512× 512 mesh.

number of processors rather than levelling off as it did for
the smaller problems. This test is the largest 2D problem we
are able to run on this workstation but we expect that when
applied to larger problems, the speedup in our MUMPS solver
will continue to scale with the number of processors.

We now begin to explore the 3D model where our issues
with memory are even more severe. Hence we are limited to
the 32 × 32 × 32 mesh where Figure 10 shows very similar
speedup results to the 2D cases. Again, we are achieving
optimal speedup up to four cores.

For each of the tests in this section we have uniformly
refined the mesh by a factor of two in each spatial dimension.
Considering the strict memory limitations of the current im-
plementation, we will next explore adaptive mesh refinement.

1 2 3 4 5 6 7 8
1

2

3

4

5

6

7

8
2D Speedup with MUMPS

Number of Cores

S
p
e
e
d
u
p
 R

a
ti
o

(1024 x 1024 cell mesh)

Fig. 9. Plot of the parallel speedup ratio on the 1024× 1024 mesh.

0 2 4 6 8 10 12 14 16
0

2

4

6

8

10

12

14

16
3D Speedup with MUMPS

Number of Cores

S
p
e
e
d
u
p
 R

a
ti
o

(32 x 32 x 32 cell mesh)

Fig. 10. Plot of the parallel speedup ratio on the 32× 32× 32 mesh.

VI. ADAPTIVE MESH REFINEMENT

We should remember that the goal is not simply to solve
for the temperature and pressure waves on the entire domain
but rather to efficiently approximate the heat flux as well as the
magnitude of the pressure wave on the surface of the tuning
fork.

Rather than uniform refinement, some kind of adaptive
algorithm could be useful. An important strategy, developed
in [21], is called goal-oriented adaptivity. By solving dual
variational problems, Oden and Prudhomme were able to
generate an adaptive algorithm that optimizes the error in
some quantity of interest. In the simplest case, this quantity
of interest is a linear functional of the computed solution. For
example, we could consider the local average of the heat flux

M =

∫
Γ

∇T1 · n ds, (10)

where Γ is a section of the boundary and T1 is the real part
of the temperature.

Goal-oriented adaptivity gives an error estimate on the
quantity M(T1)−M(T1,h) where T1,h is the computed solu-
tion, and it requires solving the dual variational problem

a∗(z, v) = M(v) (11)

for all test functions v. The solution z acts as a weighting
function for the elementwise residuals in the error estimates.
When z is small, even a large residual might contribute
very little to the actual error in M . In the case of linear
partial differential equations, the dual variational problem just
amounts to solving a linear system with the transpose of the
original stiffness matrix.

The details of implementing goal-oriented estimation are
rather delicate and beyond the scope of this paper, but for-
tunately FEniCS provides tools to automate the process. The
high-level representation of the weak form in FEniCS can be
used to automatically derive the dual variational problem, and
the details of this implementation can be found in [22].

From the user’s perspective, getting started on goal-
oriented adaptivity in FEniCS is quite simple. This is done,
while still using a MUMPS solver, simply by replacing the
line

solver = PETScLUSolver("mumps")

with the commands
M = inner(nabla_grad([u0]), n) * ds(1)
solver = AdaptiveLinearVariationalSolver(problem, M)
prm = solver.parameters["linear_variational_solver"]
prm["linear_solver"] = "mumps"

where all nodes on the subdomain of interest Γ are marked
as 1 rather than the default 0 which explains the ds(1) in the
definition of the goal functional M .

Suppose we are working on a square mesh while letting Γ
in the definition of our goal functional (10) be the right edge
of this square. First we will refine the mesh uniformly and
calculate the value of the goal functional on each mesh. We
see in Table VI that from N = 64 on through N = 512, we
are converging linearly to the goal functional with respect to
relative error

Relative Error =
|M −Mh|
|M |

(12)

where M is the exact value of the goal functional and Mh is
the computed value.

Now suppose we set the initial mesh of the adaptive code be
an 8×8 square for the same Γ used in the uniform refinement
test. The adaptive algorithm identifies and automatically refines
the region near the right edge (see Figure 11). After 50
iterations of adaptive refinement the relative error in the goal
functional is 1.78 × 10−2 with a final mesh of just 13, 188

N Relative Error Number of Cells Run Time (s)
8 1.87 128 0.027

16 1.93 512 0.042
32 1.59 × 10−1 2048 0.076
64 1.23 × 10−1 8192 0.277
128 6.36 × 10−2 32768 1.43
256 3.18 × 10−2 131072 8.37
512 1.59 × 10−2 524288 57.11

TABLE I. RELATIVE ERROR RESULTS IN THE GOAL FUNCTIONAL (10)
ON THE RIGHT EDGE OF THE SQUARE THROUGH UNIFORM MESH

REFINEMENT.

Fig. 11. The initial 8× 8 mesh (top) along with the adaptively refined mesh
(bottom) for the goal functional defined by (10).

cells and a complete run time of 24.75 seconds. This is a huge
improvement over the uniform mesh refinement which required
over 500, 000 cells to achieve approximately the same level of
accuracy.

This preliminary result suggests that goal-oriented adaptive
refinement will play an important role in future work on
approximating solutions of equations (3) with the Gaussian
source (2) around the 3D surface of the tuning fork.

VII. CONCLUSION

In this paper, we have seen how the Python interface of
FEniCS has provided a powerful tool for the simulation of
a nontrivial system of differential equations modeling trace
gas sensors. The high-level syntax makes developing and val-
idating a complex model relatively straightforward. However,
the code generation and interface to high-performance tools
means that the result is not merely a prototype – only mild
changes to the boundary conditions and mesh source are

required to change between dimensions, and the same code,
with suitably chosen solver parameters, runs seamlessly in
MPI-based parallelism.

Several topics will occupy our future study. Our study
of parallel scaling, currently limited to simple workstation-
based MPI jobs, has only recently begun. We are currently
configuring FEniCS to run on the parallel cluster at Baylor
University, on which we will be able to push MUMPS much
further. We also plan to study iterative methods, including
block-preconditioners, that should have lower memory require-
ments and scale to larger problems than direct methods. We
hope to adapt techniques like those in [23].

VIII. ACKNOWLEDGMENTS

The first two authors were supported by NSF grant CCF-
1117794.

REFERENCES

[1] A. Kosterev, G. Wysocki, Y. Bakhirkin, S. So, R. Lewicki, M. Fraser,
F. Tittel, and R. F. Curl, “Application of quantum cascade lasers to trace
gas analysis,” Appl. Phys. B, vol. 90, pp. 165–176, 2007.

[2] Y. Zhang, J. A. Smith, A. Michel, M. Baeck, Z. Wang, J. Fast,
and C. Gmachl, “Coupled monitoring and modeling of air quality
and regional climate during the 2008 Beijing olympic games.” San
Francisco: American Geophysical Union, Fall Meeting 2009, 2009.

[3] M. McCurdy, Y. Bakhirkin, G. Wysocki, R. Lewicki, and F. Tittel, “Re-
cent advances of laser-spectroscopy based techniques for applications
in breath analysis,” Journal of Breath Research, vol. 1, no. 1.

[4] A. Kosterev, Y. Bakhirkin, R. Curl, and F. Tittel, “Quartz-enhanced
photoacoustic spectroscopy,” Optics Letters, vol. 27, pp. 1902–1904,
2002.

[5] N. Petra, J. Zweck, S. Minkoff, A. Kosterev, and J. D. III, “Modeling
and design optimization of a resonant optothermoacoutstic trace gas
sensor,” SIAM J Appl Math, vol. 71, pp. 309–332, 2001.

[6] M. Wojcik, M. Phillips, B. Cannon, and M. Taubman, “Gas-phase
photoacoustic sensor at 8.41 m using quartz tuning forks and amplitude-
modulated quantum cascade lasers,” Appl. Phys. B, vol. 11, pp. 307–
313, 2006.

[7] N. Petra, J. Zweck, A. Kosterev, S. Minkoff, and D. Thomazy, “Theoret-
ical analysis of a quartz-enhanced photoacoustic spectroscopy sensor,”
Applied Physics B: Lasers and Optics, vol. 94, no. 4, pp. 673–680,
2009.

[8] S. Firebaugh, E. Terray, and L. Dong, “Optimization of resonator radial
dimensions for quartz enhanced photoacoustic spectroscopy systems,”
Proc. SPIE 8600, Laser Resonators, Microresonators, and Beam Con-
trol XV, 86001S, 2013.

[9] H. Yi, K. Liu, S. Sun, W. Zhang, and X. Gao, “Theoretical analysis of
off beam quartz-enhanced photoacoustic spectroscopy sensor,” Optics
Communications, 2012.

[10] P. Morse and K. Ingard, Theoretical acoustics. Princeton University
Press.

[11] A. Logg, K. Mardal, and G. Wells, Automated Solution of Differential
Equations by the Finite Element Method. Springer, 2012.

[12] S. Balay, J. Brown, K. Buschelman, V. Eijkhout, W. Gropp, D. Kaushik,
M. Knepley, L. McInnes, B. Smith, and H. Zhang, “PETSc users man-
ual,” Argonne National Laboratory, Tech. Rep. ANL-95/11 - Revision
3.4, 2013.

[13] M. Heroux, R. Bartlett, V. Howle, R. Hoekstra, J. Hu, T. Kolda,
R. Lehoucq, K. Long, R. Pawlowski, E. Phipps, A. Salinger, H. Thorn-
quist, R. Tuminaro, J. Willenbring, and A. Williams, “An Overview of
Trilinos,” Sandia National Laboratories, Tech. Rep. 2003-2927, 2003.

[14] BOOST C++ Libraries, http://www.boost.org. [Online].
Available: http://www.boost.org

[15] R. Kirby and A. Logg, “A compiler for variational forms,” ACM Trans.
Math. Software, vol. 32, pp. 417–444, 2006.

[16] D. Braess, Finite Elements: Theory, Fast Solvers, and Applications in
Solid Mechanics. Cambridge: Cambridge University Press, 2001.

[17]
[18] G. Karypis and V. Kumar, “Metis: Unstructured graph partitioning and

sparse matrix ordering system, version 4.0,” http://www.cs.umn.edu/
∼metis, University of Minnesota, Minneapolis, MN, 2009.

[19] P. Amestoy, I. Duff, J. Koster, and J.-Y. L’Excellent, “A fully asyn-
chronous multifrontal solver using distributed dynamic scheduling,”
SIAM Journal on Matrix Analysis and Applications, vol. 23, no. 1,
pp. 15–41, 2001.

[20] P. R. Amestoy, A. Guermouche, J.-Y. L’Excellent, and S. Pralet,
“Hybrid scheduling for the parallel solution of linear systems,” Parallel
Computing, vol. 32, no. 2, pp. 136–156, 2006.

[21] J. Oden and S. Prudhomme, “Goal-oriented error estimation and adap-
tivity for the finite element method,” Computers and Mathematics with
Applications, vol. 41, no. 5, pp. 735–756, 2001.

[22] M. Rognes and A. Logg, “Automated goal-oriented error control i:
Stationary variatonal problems,” SIAM Journal on Scientific Computing,
vol. 35, no. 3, pp. 173–193, 2013.

[23] V. Howle and R. Kirby, “Block preconditioners for finite element dis-
cretization of incompressible flow with thermal convection,” Numerical
Linear Algebra with Applications, vol. 19, no. 2, pp. 427–440, 2012.

