



$$-i\beta\omega\left(\mathsf{T}-\frac{\gamma-1}{\gamma\alpha}\mathsf{P}\right)-\beta\ell_{\mathsf{h}}\mathsf{c}\Delta\mathsf{T}=\mathsf{S},\\-\gamma(\omega^{2}-i\ell_{\mathsf{v}}\mathsf{c}\omega\Delta)(\mathsf{P}-\alpha\mathsf{T})-\mathsf{c}^{2}\Delta\mathsf{P}=$$

- **Theorem :** Optimal  $L^2$  and  $H^1$  error estimates.

# **Block Preconditioners of Trace Gas Sensor Models**

# Automating the Finite Element Method

- We employ the Python interface to FEniCS:
- Construct or import a mesh (Dolfin).
- Efficient assembly of global system matrices (FFC).
- Calculate finite element solution (NumPy, SciPy, PyAMG).

# Linear System

| The system | $A_h u = f$ | f becomes, |
|------------|-------------|------------|
|------------|-------------|------------|

| ( | $a_1K$           | $a_2M$  | 0      | $-a_3M$ |  |
|---|------------------|---------|--------|---------|--|
|   | $-a_2M$          | $a_1K$  | $a_3M$ | 0       |  |
|   | $-a_4K$          | $-a_3M$ | $a_5K$ | -H      |  |
|   | a <sub>3</sub> M | $-a_4K$ | Н      | $a_5K$  |  |

Where K and M are the stiffness and mass matrices, respectively, and  $\mathbf{H} = \mathbf{K} - \kappa^2 \mathbf{M}$  is the Helmholtz matrix.

# **Classical Preconditioning Techniques**

| Ν   | GMRES   | ILU(3) | Block Jacobi | Block Gauss-Seidel |
|-----|---------|--------|--------------|--------------------|
| 32  | 1156    | 12     | 269          | 141                |
| 64  | 4320    | 14     | 291          | 154                |
| 128 | 10000 + | 44     | 257          | 143                |
| 256 |         | 235    | 245          | 134                |
| 512 |         | 429    | 231          | 127                |

Table: Iteration counts for the unpreconditioned GMRES method and GMRES coupled with the block Jacobi, block Gauss Seidel and Incomplete LU factorization preconditioners using realistic physical data.

# **Custom Block Preconditioner**

The effects of fluid viscosity and thermal conduction described by the characteristic lengths  $\ell_v$  and  $\ell_h$ , respectively, are particularly small. Ignoring terms containing these values suggests the following block preconditioner.

$$P = \begin{pmatrix} 0 & a_{2}M & 0 & -a_{3}M \\ -a_{2}M & 0 & a_{3}M & 0 \\ 0 & -a_{3}M & 0 & -H \\ a_{3}M & 0 & H & 0 \end{pmatrix}.$$
 (4)  
Clustering :  $\lambda(P^{-1}A_{h}) = 1 + Ch^{-2}$ , but

• Eigenvalue  $C = O(10^{-10}).$ 





$$\begin{pmatrix} \mathbf{T}_1 \\ \mathbf{T}_2 \\ \mathbf{P}_1 \\ \mathbf{P}_2 \end{pmatrix} = \begin{pmatrix} \mathbf{S} \\ \mathbf{0} \\ \mathbf{0} \\ \mathbf{0} \\ \mathbf{0} \end{pmatrix}$$
(3)

### **Complex Shifted Laplacian**

Inverting **P** can be reduced to solving a block upper triangular system where we must solve the two Helmholtz sub-problems. For this we apply the now common complex shifted Laplacian preconditioner.  $\mathsf{P}_{\mathsf{H}} = \mathsf{K} - (\alpha + \mathsf{i}\beta)\kappa^{2}\mathsf{M}$ (5)

where lpha and eta are real numbers chosen such that multigrid methods are known to behave better on  $P_H$  than on H itself.

### **Numerical Results**



Figure: Preconditioned residual norms at the **k**<sup>th</sup> GMRES iteration for the 2D problem on various  $\mathbf{N} \times \mathbf{N}$  meshes.

### **Future Work**

- boundary.

### References

- Waves in a Trace Gas Sensor," PyHPC 2013.
- J. Scientific Computing.



Test with HPC parallel libraries such as Trilinos or PETSc. Experiment with alternative methods for Helmholtz problems. Couple current problem with an elasticity model for tuning fork

► B. Brennan, R. C. Kirby, J. Zweck, and S. Minkoff, "High Performance Python-based Simulations of Pressure and Temperature ► B. Brennan and R. C. Kirby, "Block preconditioners for a coupled pressure-temperature model of trace gas sensors," submitted to SIAM

S.E. Minkoff, A.A. Kosterev, N. Petra, J. Zweck and J.H. Doty III, "Modeling and design optimization of a resonant optothermoacoutstic trace gas sensor", SIAM J Appl Math, 71 (2001), pp. 309-332.