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Motivation

I A trace gas is a gas which makes up less than 1% of the Earth’s
atmosphere.

I A trace gas sensor is a very sensitize device for detecting these
gases.

I Current Applications:
1) Monitoring pollutants
2) Leak detection
3) Early fire detection

I Future Applications:

1) Non-invasive disease diagnosis

Mathematical Model

Coupled pressure-temperature equations of gas:
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T: Temperature
P: Pressure
S: Gaussian heat source
`h: heat conduction parameter
α:
(
∂P
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)
v

c: sound speed

`v: viscosity parameter

γ:
cp

cv

ω: QTF resonance frequency

Helmholtz Equations

With a time harmonic source term, we can simplify (1) to the
time-independent Helmholtz equations:
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− γ(ω2 − i`vcω∆)(P− αT)− c2∆P = 0, (2b)

where β = α2γ2ω
γ−1

, T = T1 + iT2 and P = P1 + iP2.

Theory

·Theorem : Problem is continuous and coercive.

·Theorem : Optimal L2 and H1 error estimates.

Automating the Finite Element Method

We employ the Python interface to FEniCS:
I Construct or import a mesh (Dolfin).
I Efficient assembly of global system matrices (FFC).
I Calculate finite element solution (NumPy, SciPy, PyAMG).

Linear System

The system Ahu = f becomes,
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Where K and M are the stiffness and mass matrices, respectively,
and H = K− κ2M is the Helmholtz matrix.

Classical Preconditioning Techniques

N GMRES ILU(3) Block Jacobi Block Gauss-Seidel

32 1156 12 269 141
64 4320 14 291 154

128 10000+ 44 257 143
256 235 245 134
512 429 231 127

Table: Iteration counts for the unpreconditioned GMRES method and GMRES coupled
with the block Jacobi, block Gauss Seidel and Incomplete LU factorization
preconditioners using realistic physical data.

Custom Block Preconditioner

The effects of fluid viscosity and thermal conduction described by the
characteristic lengths `v and `h, respectively, are particularly small.
Ignoring terms containing these values suggests the following block
preconditioner.

P =


0 a2M 0 −a3M
−a2M 0 a3M 0

0 −a3M 0 −H
a3M 0 H 0

 . (4)

·Eigenvalue Clustering : λ(P−1Ah) = 1 + Ch−2, but
C = O(10−10).

Complex Shifted Laplacian

Inverting P can be reduced to solving a block upper triangular system
where we must solve the two Helmholtz sub-problems. For this we
apply the now common complex shifted Laplacian preconditioner.

PH = K− (α + iβ)κ2M (5)

where α and β are real numbers chosen such that multigrid methods
are known to behave better on PH than on H itself.

Numerical Results
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2D Residuals Results
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Figure: Preconditioned residual norms at the kth GMRES iteration for the 2D problem
on various N× N meshes.

Future Work

I Test with HPC parallel libraries such as Trilinos or PETSc.
I Experiment with alternative methods for Helmholtz problems.
I Couple current problem with an elasticity model for tuning fork

boundary.
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