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Abstract. Trace gas sensors are currently used in many applications from leak detection to
national security and may some day help with disease diagnosis. These sensors are modelled by
a coupled system of complex elliptic partial differential equations for pressure and temperature.
Solutions are approximated using the finite element method which yields a skew-Hermitian dominant
discretization for which classical algebraic preconditioners quickly degrade. We develop a block
preconditioner that requires scalar Helmholtz solutions to apply but gives a very low outer iteration
count. We also present analysis showing eigenvalues of the preconditioned system are mesh-dependent
but with a small coefficient. Numerical experiments confirm our theoretical discussion.
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1. Introduction. Currently, research on trace gas sensors is focused on the
development of portable, efficient, and cost-effective sensor technologies that can be
deployed in networks for large scale monitoring of carbon dioxide and atmospheric
pollutants, as well as for non-invasive disease diagnosis using breath analysis [14, 16,
27]. One such trace gas sensor is the Quartz-Enhanced Photo-Acoustic Spectroscopy
(QEPAS) sensor which employs a quartz tuning fork to detect the weak acoustic
pressure waves generated by the interaction of laser radiation with a trace gas [13].
More specifically, QEPAS sensors are based on the following physical mechanisms.
A laser generates optical radiation at a specific absorption wavelength of the gas to
be detected. The laser beam is directed between the tines of the tuning fork. The
optical energy that is absorbed by the trace gas is transformed into vibrational energy
of the gas molecules, generating a temperature disturbance. If the interaction between
the laser and the trace gas is sinusoidally modulated, this temperature disturbance
is in the form of a thermal wave. In addition, vibrational to translational energy
conversion processes in the gas molecules result in the generation of a weak acoustic
pressure wave, which can be detected by the tuning fork. To amplify the signal
detected by the tuning fork, the modulation frequency of the laser is chosen so as to
excite a resonant vibration in the tuning fork. Finally, since quartz is a piezoelectric
material, this mechanical vibration is converted to an electric current that can be
measured. Because the entire process is linear, the measured current is proportional
to the concentration of the trace gas. In some experimental regimes, the tuning fork
can also be used to directly detect the thermal wave via the pyroelectric effect [20].

Most mathematical models of QEPAS sensors [8, 19, 25, 26] have included damp-
ing in the model using an ad hoc approach that involves making experimental mea-
surements using the actual tuning fork being modeled. In [2], we began developing a
more realistic model of the damping in a QEPAS sensor based on a coupled pressure-
temperature system derived by Morse and Ingard [17]. This model of a QEPAS sensor
incorporates the effects of viscous damping using a parameter that depends on the
physical properties of the fluid and not the particular details the tuning fork. By elim-
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2 Block Preconditioners of Trace Gas Sensor Models

Fig. 1: Schematic diagram of the experimental setup for a QEPAS sensor showing
the tuning fork (the U-shaped bar with two tines), two attached wires, and the laser
source focused between the tines of the tuning fork.

inating these ad hoc parameters, we hope not only to obtain a higher-fidelity model,
but also one more amenable to eventual design optimization of the tuning fork.

In this paper we present an effective block preconditioner for the pressure-temperature
equations, which takes advantage of the problem structure and the particular regime
of realistic physical parameters. We show that the cost applying the preconditioner is
dominated by solving a pair of scalar indefinite Helmholtz problems with high wave
number. Although this problem is quite challenging for classical iterative methods [6],
thanks to recent progress on techniques such as complex shifts [5] this is at least
tractable and far better than the original coupled system. In Section 2, we present
our coupled mathematical model and its corresponding variational form and finite
element discretization. Section 3 begins with a survey of some standard precondition-
ing methods and how they perform on our problem with various sets of physical data
which motivates our new block preconditioner. Here we also give an eigenvalue bound
which is mesh dependent but scaled by a very small constant due to the extreme data
values. In Section 4 we describe how to apply our preconditioner in terms of solv-
ing scalar Helmholtz solves. In Section 5, we validate our implementation against a
known plane wave solution to the coupled system, and also report on the performance
of our preconditioner with respect to physical data and mesh refinement. In Section
6 we discuss concluding remarks and ideas for future work.

2. Mathematical Model and Discretization. The interaction of laser ra-
diation with the trace gas generates an acoustic pressure wave, P, and a thermal
disturbance, T . To model the effects of viscous damping and thermal conduction in
the gas, Morse and Ingard derived a coupled system of pressure-temperature equations
which generalizes the standard acoustic wave and heat equations. These equations
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are given by

∂

∂t

(
T − γ − 1

γα
P
)
− ℓhc∆T = S,(2.1a)

γ

(
∂2

∂t2
− ℓvc

∂

∂t
∆

)
(P − αT )− c2∆P = 0.(2.1b)

Here ℓv and ℓh are characteristic lengths associated with the effects of fluid viscosity
and thermal conduction, respectively, c is sound speed, γ is the ratio of the specific
heat of the gas at constant pressure to that at constant volume, and α =

(
∂P
∂T

)
v
is the

rate of change of ambient pressure with respect to ambient temperature at constant
volume.

We model the interaction between the laser and the trace gas using the source
term, S, in equation (2.1a) given by

(2.2) S(x, t) = C exp

(
−2[(x− xs)

2 + (z − zs)
2]

σ2

)
exp(−iωt)

where C is a constant that is proportional to the concentration of the trace gas
to be detected, (xs, zs) are the coordinates of the axis of the cylindrically symmetric
Gaussian power profile of the laser beam, σ is the beam width and ω is the frequency of
the periodic interaction between the laser radiation and the trace gas. The modulation
frequency, ω, is chosen so as to excite a resonant vibration in the tuning fork. Since
S(x, t) = S(x) exp(−iωt) is periodic in time, so are the pressure and temperature
waves. Substituting P(x, t) = P (x) exp(−iωt) and T (x, t) = T (x) exp(−iωt) into
equations (2.1a) and (2.1b) we obtain the coupled system of Helmholtz-type equations

− iβω

(
T − γ − 1

γα
P

)
− βℓhc∆T = S,(2.3a)

− γ(ω2 − iℓvcω∆)(P − αT )− c2∆P = 0,(2.3b)

where β = α2γ2ω
γ−1 has been chosen to maximize skewness on the antidiagonal in the

operator as we see in (2.4). Since critical pieces of our numerical software stack do
not currently handle complex arithmetic, we split the 2× 2 complex-valued problem
into a 4 × 4 system with real variables. Setting T = T1 + iT2, and P = P1 + iP2

while scaling the second of equations (2.3) by −i, we obtain a system of four partial
differential equations of the form Au = b, where

A =


−βℓhc∆ βω 0 −αγω2

−βω −βℓhc∆ αγω2 0
αγℓvcω∆ −αγω2 −γℓvcω∆ γω2 + c2∆
αγω2 αγℓvcω∆ −(γω2 + c2∆) −γℓvcω∆

(2.4)

=


−a1∆ a2 0 −a3
−a2 −a1∆ a3 0
a4∆ −a3 −a5∆ a6 + a7∆
a3 a4∆ −(a6 + a7∆) −a5∆

.
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We should note that this model holds in all spatial dimensions.
The performance of any numerical method will be heavily dependent on the given

physical data. Our goal is to solve the system using realistic parameters, such as

ℓh = 1.6 · 10−6 m a1 = βℓhc = 381.37(2.5)

ℓv = 10−6 m a2 = βω = 4.19 · 1011

c = 300 m/s a3 = αγω2 = 1.35 · 1010

ω = 33, 000 Hz a4 = αγℓvcω = 12.29

γ = 1.4 a5 = γℓvcω = 1.38

α = 8.8667 Pa/K a6 = γω2 = 1.52 · 109

a7 = c2 = 9.0 · 104.

This PDE system admits a standard variational form where we seek u ∈ V ⊂ H1,
with appropriate boundary conditions enforced, such that

(2.6) a(u, v) = L(v) ∀v ∈ V̂ ,

where V is the trial space and V̂ is the test space [1, 3, 12]. In our case,

a(u, v) = βℓhc⟨∇T1,∇v1⟩+ βω⟨T2, v1⟩ − αγω2⟨P2, v1⟩ − βω⟨T1, v2⟩
+ βℓhc⟨∇T2,∇v2⟩+ αγω2⟨P1, v2⟩ − αγℓvcω⟨∇T1,∇v3⟩ − αγω2⟨T2, v3⟩
+ γℓvcω⟨∇P1,∇v3⟩+ γω2⟨P2, v3⟩ − c2⟨∇P2,∇v3⟩+ αγω2⟨T1, v4⟩
− αγℓvcω⟨∇T2,∇v4⟩ − γω2⟨P1, v4⟩+ c2⟨∇P1,∇v4⟩+ γℓvcω⟨∇P2,∇v4⟩,

and L(v) = ⟨S, v1⟩.
On a finite-dimensional subspace Vh ⊆ V , the discrete approximation uh ∈ Vh is

represented by

(2.7) uh(x) =

N∑
i=1

ηiϕi(x), x ∈ Ω

where ϕi(x) is a continuous piecewise polynomial over the mesh. We will focus solely
on P 1 elements. Our discretization will give linear systems with a natural block
structure in terms of the mass and stiffness matrices, which are

(2.8) Kij =

∫
Ω

∇ϕi · ∇ϕjdx,

and

(2.9) Mij =

∫
Ω

ϕiϕjdx.

By using mass lumping or equivalently, a vertex-based quadrature rule, M becomes
diagonal.
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In terms of M and K, the linear system arising from the finite element discretiza-
tion has the form

(2.10) Ah =


a1K a2M 0 −a3M
−a2M a1K a3M 0
−a4K −a3M a5K a6M − a7K
a3M −a4K a7K − a6M a5K

.

3. Preconditioning. Our goal is to develop an effective preconditioner that
handles the block structure and severe physical parameters of our problem. Though a
bit of a straw man for coupled systems, we will report on the standard incomplete LU
factorization applied to the full, unblocked matrix. Besides this, we will consider two
common block preconditioners based on the block diagonal (Jacobi) or block lower
triangular (Gauss-Seidel) parts. We deal with a 2× 2 partitioning of the system that
respects the origin of the PDE as complex-valued. The block Jacobi preconditioner
we consider is

(3.1) PJac =


a1K a2M 0 0
−a2M a1K 0 0

0 0 a5K a6M − a7K
0 0 a7K − a6M a5K

,

and the block Gauss-Seidel is

(3.2) PGS =


a1K a2M 0 0
−a2M a1K 0 0
−a4K −a3M a5K a6M − a7K
a3M −a4K a7K − a6M a5K

 .

Blocking with respect to the 4× 4 system would be simpler, but less powerful.
In Tables 1 and 2 we compare the iteration counts of the Generalized Minimal

Residual Method (GMRES) with no preconditioner, ILU(3) preconditioning, and the
block Jacobi and block Gauss-Seidel preconditioners for a simple data set and the
realistic data given by (2.5). Since we are simply testing the iteration count rather
than trying to implement a practical method, we apply the preconditioners (3.1)
and (3.2) with a direct method. In each case, we use unrestarted GMRES and iterate
to a Euclidean norm tolerance of 10−10.

For Table 1, we set the data to γ = 1.5, ℓh = 0.0016, ℓv = 0.001 and c, ω, α all
to 1.0. Even with this simple data, unpreconditioned GMRES fails to converge as
we refine the mesh. ILU(3) performs perhaps as expected, with the iteration count
growing as the mesh is refined. We also see that the block preconditioners both give
mesh-independent and very low iteration counts, so that deriving a practical algorithm
for applying them would give a very powerful preconditioner indeed.

The same situation does not hold for the physical data of interest (2.5). The
iteration counts for ILU(3) are a bit larger than on the simple data. Although the
block preconditioners seem to have a mesh-independent bound on the iteration count,
that these counts are so much larger motivates studying a preconditioner that respects
the particular parameter regime of physical interest.

The effects of fluid viscosity and thermal conduction described by the character-
istic lengths ℓv and ℓh, respectively, are particularly small in magnitude relative to all
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N GMRES ILU(3) Block Jacobi Block Gauss-Seidel

32 1329 12 6 4
64 4514 21 6 4
128 10000+ 37 6 4
256 69 6 4
512 122 6 4

Table 1: Iteration counts for the unpreconditioned GMRES method and GMRES
coupled with the block Jacobi, block Gauss Seidel and Incomplete LU factorization
preconditioners for simple data γ = 1.5, ℓh = 0.0016, ℓv = 0.001 and c, ω, α all set to
1.0.

N GMRES ILU(3) Block Jacobi Block Gauss-Seidel

32 1156 12 269 141
64 4320 14 291 154
128 10000+ 44 257 143
256 235 245 134
512 429 231 127

Table 2: Iteration counts for the unpreconditioned GMRES method and GMRES
coupled with the block Jacobi, block Gauss Seidel and Incomplete LU factorization
preconditioners using realistic physical data.

other physical data. If we ignore these effects in the original model (2.3), we find the
simplified system

− iβω

(
T − γ − 1

γα
P

)
= S,(3.3a)

− γω2(P − αT )− c2∆P = 0.(3.3b)

If we solve (3.3a) for either T or P and substitute this into (3.3b), the system
decouples to the standard inhomogeneous acoustic wave equation of a single variable.
So we are essentially using the classical wave equation to precondition the coupled
system of modified wave equations. Discretizing (3.3) gives the following block pre-
conditioner,

(3.4) P =


0 a2M 0 −a3M

−a2M 0 a3M 0
0 −a3M 0 a6M − a7K

a3M 0 a7K − a6M 0

 .

A tedious application of block Gaussian elimination shows that P is in fact in-
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vertible, and we can calculate

(3.5)

P−1Ah =


I −â1M−1K + â2H

−1K 0 â4H
−1K

â1M
−1K − â2H

−1K I −â4H−1K 0
0 â3H

−1K I â5H
−1K

−â3H−1K 0 −â5H−1K I


where H = K − κ2M and the coefficients have been consolidated into

â1 =
a1
a2

= 9.091 · 10−10 â4 =
a3a5
a2a7

= 7.443 · 10−7(3.6)

â2 =
a3a4
a2a7

= 6.6 · 10−6 â5 =
a5
a7

= 2.31 · 10−5

â3 =
a4
a7
− a1a3

a2a7
= 6.827 · 10−5 κ =

√
a6
a7
− a33

a2a7
= 110.0.

Here κ is the Helmholtz wave number.
We begin our analysis of this preconditioner with a simple comparison of the

2-norm condition numbers of Ah and P−1Ah for some very coarse meshes.

N cond(Ah) cond(P−1Ah)

8 1.1135e+05 1.0729
16 6.7555e+04 1.0003
32 1.8726e+05 1.0005

Table 3: 2−norm condition numbers of the unpreconditioned and preconditioned
matrix for various N ×N meshes.

A direct calculation of the condition number of P−1Ah, although feasible only for
coarse meshes, gives an indication in Table 3 of the efficiency of our preconditioner.
We will soon develop an algorithm for applying P−1 to a given vector b.

A fuller picture comes from investigating the eigenvalues of the preconditioned
operator. Krylov methods tend to perform well if the eigenvalues are clustered away
from the origin in a small region of the complex plane. Our estimate reveals mesh-
dependence but the mesh dependent term is scaled by a factor that, for our physical
parameters, is very small. This suggests that our preconditioner will be practical on
moderate mesh sizes, although a preconditioner combining mesh independence with
small iteration counts will remain an open question for this problem.

We use the classical Gershgorin circle theorem, suitably generalized to block ma-
trices [23].

Theorem 3.1 (Block Gershgorin). Let A be partitioned into Aij, i, j = 1, . . . , N
with ∥Aij∥2 defined as the operator norm of Aij. All eigenvalues of the block parti-
tioned matrix A are contained in the set G = ∪Ni=1Gi, where Gi is the set of all λ ∈ C
satisfying,

(3.7)
∥∥(Aii − λI)−1

∥∥−1

2
≤

∑
i ̸=j

∥Aij∥2 .
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Corollary 3.2. All eigenvalues λ of P−1Ah, as defined by 3.5, satisfy

(3.8) |λ− 1| ≤ Ch−2.

Proof. First, we assume the mesh is sufficiently refined so that the Helmholtz ma-
trix, H, is positive definite. Since all diagonal blocks of P−1Ah are identity matrices,
equation (3.7) immediately reduces to

(3.9) |λ− 1| ≤ r

where

(3.10) r = max
{
â1

∥∥M−1K
∥∥
2
+ (â2 + â4)

∥∥H−1K
∥∥
2
, (â3 + â5)

∥∥H−1K
∥∥
2

}
.

We expect
∥∥H−1K

∥∥
2
= O(1) by theory of equivalent operators [7]. However,∥∥M−1K

∥∥ ≤ λmax(K)
λmin(M) = O(h

−2) in all spacial dimensions.

Corollary 3.2 yields a mesh dependent bound on the eigenvalues clustered around
1.0. This is offset by two key observations. First, equation (3.10) can be reduced to

(3.11) r ≈ â1O(h−2) + (â2 + â4)O(1)

where â1 = 9.091 · 10−10 and â2 + â4 = 7.34 · 10−6. So unless we require an extremely
fine mesh, the eigenvalues are well clustered about 1.0. Second, we can see from (3.5)
that P−1Ah is a nearly skew perturbation of the identity. That is, P−1Ah = I + E
where E ≈ −ET . This tells us that even as the eigenvalues of the preconditioned
system move away from 1.0, they should do so almost entirely along the imaginary
axis and more importantly, not towards 0.0. Both observations are illustrated in
Figure 2.

4. Implementation. For the construction of the finite element matrices we em-
ploy the Python interface to FEniCS [15]. For the sparse linear algebra operations
and Krylov solvers we use Numpy and SciPy [4, 21]. Finally, we rely on the alge-
braic multigrid preconditioners from PyAMG for solving our embedded Helmholtz
problems with a complex shift [24].

Applying the preconditioner requires solving the system

(4.1)


0 a2M 0 −a3M

−a2M 0 a3M 0
0 −a3M 0 a6M − a7K

a3M 0 a7K − a6M 0




b̂1
b̂2
b̂3
b̂4

 =


b1
b2
b3
b4

 .

We apply blockwise Gaussian elimination to obtain the block upper triangular
system

(4.2)
−a2M 0 a3M 0

0 a2M 0 −a3M
0 0 K − κ2M 0
0 0 0 K − κ2M




b̂1
b̂2
b̂3
b̂4

 =


b2
b1

1
a7
(b4 +

a3

a2
b2)

− 1
a7
(b3 +

a3

a2
b1)

 ,
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Fig. 2: A display of the 100 largest eigenvalues (in magnitude), of the preconditioned
operator, P−1Ah, for N = 32 on the left and N = 256 on the right. The smallest
eigenvalues are clustered around (1, 0).

where κ =
√

a6

a7
− a2

3

a2a7
= 110.0.

We will describe how we use algebraic multigrid, applied to a complex-shifted
operator, for applying H−1. Supposing this or some other effective Helmholtz solver
is used, we have

b̂3 =
1

a7
H−1

(
b4 +

a3
a2

b2

)
(4.3a)

b̂4 = − 1

a7
H−1

(
b3 +

a3
a2

b1

)
.(4.3b)

With a lumped mass matrix, we let M = diag(M⃗) and we can apply M or M−1

to a given vector by pure element-wise multiplication (∗) or division (/), respectively.

b̂1 = −(b2 − a3M⃗ ∗ b̂3)/(a2M⃗)(4.4a)

b̂2 = (b1 + a3M⃗ ∗ b̂4)/(a2M⃗).(4.4b)
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The key observation here is that the inversion of the full 4× 4 block matrix P at
each outer iteration has been reduced to inverting the discrete Helmholtz block, H,
twice per iteration, plus some basic arithmetic.

Accuracy requirements in solving the Helmholtz problem are met by enforcing a
sufficient number of mesh points per wavelength. A standard rule of thumb is κh ≤ π

5
where κ is the Helmholtz wave number [9]. For the rest of this paper we will assume
this condition is met.

Even for sufficiently refined meshes, the indefinite Helmholtz equation is difficult
to solve. Many preconditioners have been suggested for this problem. For this paper
we apply the now common complex shift technique [5]. That is, we let PH = K −
(α + iβ)κ2M where α and β are real numbers chosen such that multigrid methods
are known to behave better on PH than on H itself.

(α, β) κ = 25 κ = 50 κ = 100

(1,0) 112 308 1000+
(0,0) 11 25 70
(1,0.5) 9 20 56

Table 4: Number of GMRES iterations for Helmholtz operator preconditioned with
PH = K − (α+ iβ)κ2M . For each test, the number of mesh points per wavelength is
kept constant by enforcing κh ≤ π/5.

In Table 4 we compare iteration counts for preconditioned GMRES using an
algebraic multigrid preconditioner for PH with various values of (α, β) applied to the
Helmholtz equation over a range of wave numbers. By setting (α, β) = (1, 0) we
are solving the unpreconditioned Helmholtz operator. As expected, GMRES fails to
converge for large wave numbers. For (α, β) = (0, 0) we are simply preconditioning
the Helmholtz operator with the Laplacian. While this shows great improvement over
the unpreconditioned operator, optimal results are found by setting (α, β) = (1, 0.5).
For all tests in this paper we will precondition the Helmholtz operator with

(4.5) PH = K − i(1 + 0.5i)κ2M,

with the widely used choice of (α, β) = (1, 0.5).

Algorithm 1 shows a brief outline of our method. Given a particular set of physical
data, FEniCS is used to assemble the load vector b, the vector M⃗ containing the mass
diagonal and the stiffness matrix K. Next we use Numpy, Scipy and PyAMG tools to
build the global block operator Ah and the complex-shifted preconditioner PH . For
PH , we use the smoothed aggregation solver of PyAMG with default parameters [18].
To apply the global preconditioner we require two calls to an unrestarted GMRES
solver for the Helmholtz blocks. This is done at each iteration of the global unrestarted
GMRES solver which returns the final solution u = (T1, T2, P1, P2).

In Figure 3 we show the preconditioned residual norms of the GMRES iterations.
Here we are solving Hx = y with algebraic multigrid for the the complex-shifted
Laplace operator as a preconditioner. Super linear convergence appears to be obtained
independent of the mesh size but only after a significant number of iterations. This
observation motivates future work with eigenvalue deflation [22].
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Algorithm 1 Solve Ahu = b

1: Import physical data
2: Build FEM vectors b and M⃗ and the matrix K
3: Build global block operator Ah

4: amg(PH)← algebraic multigrid PC for complex-shifted Laplacian
5:

6: procedure Pinv(b = (b1, b2, b3, b4)) ▷ Apply P−1 to b

7: y3 ←
(
b4 − a3

a2
b2

)
/a7 ▷ Update RHS vectors

8: y4 ← −
(
b3 − a3

a2
b1

)
/a7

9:

10: b̂3 ← gmres(H, y3, amg(PH), tol = 10−10) ▷ Solve Helmholtz blocks

11: b̂4 ← gmres(H, y4, amg(PH), tol = 10−10)
12:

13: b̂1 ← −(b2 − a3M⃗ ∗ b̂3)/(a2M⃗) ▷ Complete back-solve

14: b̂2 ← (b1 + a3M⃗ ∗ b̂4)/(a2M⃗)
15:

16: b̂ = (b̂1, b̂2, b̂3, b̂4)

17: return b̂ ▷ b̂ ≈ P−1b
18: end procedure
19:

20: u← gmres(Ah, b, Pinv, tol = 10−8) ▷ Solve global system

5. Results. Since our problem is highly ill-conditioned, it is important to make
sure we are converging to the correct finite element solution and not succumbing to
round-off error. For the purpose of testing our method, we can assume a plane wave
pressure solution to equation (2.3) as presented by Morse and Ingard [17]. That is,
we let

(5.1) P (x) = eik·x,

where k is the complex wave vector. By setting S = 0 the temperature is also a plane
wave, given by

(5.2) T (x) =
iω(γ − 1)

(iω − ℓhck2)γα
eik·x,

and we fix Dirichlet boundary conditions to coincide with the plane wave solution.
With these exact solutions, we can verify the accuracy of our method while also

checking that it is converging to the exact solution at the expected rate. For polyno-
mials of order p, we expect the error in the finite element solution to be O(hp+1) in
the L2 norm. In Figure 4 we show a log scale plot of the error with respect to mesh
refinement while using piecewise linear basis functions. For this polynomial order of
p = 1, we see the expected quadratic convergence rate. The algebraic system for this
validation was solved using the preconditioner we have derived here.

In Figure 5 we show a log scale plot of the residual vector norms with respect
to the outer GMRES iteration count for data set (2.5) on different levels of mesh
refinement. The GMRES iteration count grows slightly as we refine the mesh.
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Fig. 3: Preconditioned residual norms at the kth GMRES iteration for the 2D
Helmholtz problem on various N × N meshes. Deflation or including plane wave
modes in PyAMG could give future acceleration.

ω â1 N = 32 N = 64 N = 128 N = 256

100000 1.6e-08 2 2 3 6
50000 3.2e-08 2 2 3 11
10000 1.6e-07 3 6 14 82
5000 3.2e-07 5 11 32 1000+
1000 1.6e-06 14 281 1000+
500 3.2e-06 76 1000+

Table 5: Number of GMRES iterations for the data sets ℓh = 0.0016, ℓv = 0.001,
c = 1, α = 1, γ = 1.5 with varying values of ω and N .

The proof of Corollary 3.2 tells us that a key physical parameter in determining
the effectiveness of our preconditioner is â1 = a1

a2
= ℓhc

ω . If we fix the values of c
and ℓh, we can examine the effectiveness of the preconditioner for different data sets
by simply adjusting the value of ω. In Table 5 we see that the GMRES iteration
count increases rapidly as we increase â1 and / or refine the mesh. So the extreme
values our data, specifically the extremely small ratio of ℓh to ω, are what allow our
preconditioner to be effective. When this ratio is not so extreme, Table 1 shows that
more standard block preconditioners perform quite well.
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Fig. 4: Convergence results for the 2D problem on various N ×N meshes.

6. Conclusion. In this paper we have presented an effective data-dependent
block preconditioner for the coupled pressure-temperature equations used to model
trace gas sensor technology. The need for such a preconditioner was demonstrated
with a comparison of classical preconditioning techniques such as the incomplete LU,
Jacobi and Gauss-Seidel methods. By taking advantage of the particular structure of
the preconditioner and its sub-blocks, we have reduced the application of the global
preconditioner to the inversion of two Helmholtz sub-blocks and two element-wise
vector division operations.

All tests in this paper were run in serial. Future work on this topic will include
high performance parallel libraries such as Trilinos [10]. The greatest room for im-
provement may still be with respect to the Helmholtz solver. Coupling the shifted
Laplace preconditioner with a multigrid deflation algorithm has shown promising re-
sults [22].

We have been working with the 4×4 system of real variables. Another option for
future work is to explore the complex 2× 2 system using a software package capable
of handling complex arithmetic, such as the Trilinos package Muelu [11].

Acknowledgments. The authors thank Dr. John Zweck, Dr. Susan E. Minkoff
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