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Introduction to Trace Gas Sensing

I A trace gas is a gas which makes up less than 1% of the Earth’s
atmosphere.

I A trace gas sensor is a very sensitize device for detecting these gases.

I Current Applications:
1. Monitoring atmospheric

pollutants

2. Leak detection

3. Early fire detection on
spacecraft

I Future Applications:
1. Non-invasive disease diagnosis
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Introduction to Trace Gas Sensing

Figure: Trace gas sensor resting on the tip of a finger.
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Introduction to Trace Gas Sensing

Photo-acoustic Spectroscopy:

I We fire a modulated laser between
the tines of a quartz tuning fork.

I Present gas molecules become
excited.

I Thermal and pressure waves are
generated.

I Electrodes on the the tuning fork
convert waves to electric current.

I The amplitude of the current
determines the amount of gas
present.
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Introduction to Trace Gas Sensing
Current Models:

I Resonant Optothermoacoustic
Detection (ROTADE) sensors
capture only the thermal wave.

I Quartz-Enhanced Photoacoustic
Spectroscopy (QEPAS) sensors
capture only the pressure wave.

We seek a model which captures both effects simultaneously.
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Mathematical Model

Coupled pressure-temperature equations of gas:


∂

∂t

(
T − γ − 1

γα
P
)
− `hc∆T = S(x, t)

γ

(
∂2

∂t2 − `vc ∂
∂t ∆

)
(P − αT )− c2∆P = 0 in R2\ΩTF

(1a)

(1b)

T : temperature
S : cylindrically sym. Gaussian

heat source
`h : heat conduction parameter
α:
(
∂P
∂T

)
v

A: proportional to gas
concentration

P: pressure

c: sound speed

`v : viscosity parameter

γ: cp
cv

ω: QTF resonance frequency
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Mathematical Model

With a time harmonic source term, we can simplify (1) to the
time-independent Helmholtz equations:

− iβω
(

T − γ − 1
γα

P
)
− β`hc∆T = S

− γ(ω2 − i`vcω∆)(P − αT )− c2∆P = 0

(2a)

(2b)

where β = α2γ2ω
γ−1 , T = T1 + iT2 and P = P1 + iP2.
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Mathematical Model

It will be convenient to view (2) as a system of four partial differential
equations of the form Au = b, where

A =


−β`hc∆ βω 0 −αγω2

−βω −β`hc∆ αγω2 0
αγ`vcω∆ −αγω2 −γ`vcω∆ γω2 + c2∆
αγω2 αγ`vcω∆ −(γω2 + c2∆) −γ`vcω∆

 (3)

where u = (T1,T2,P1,P2)T and b = (S , 0, 0, 0)T .
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Existence and Uniqueness

Definition
A bilinear form a(u, v) on a normed linear space H is said to be
continuous on V ⊂ H if there exists some M > 0 such that

|a(u, v)| ≤ M ‖u‖H ‖v‖H , for all u, v ∈ V . (4)

and coercive on V ⊂ H if there exists some C > 0 such that

a(v, v) ≥ C ‖v‖2H , for all v ∈ V . (5)
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Existence and Uniqueness

Lemma (Lax-Milgram)
Given a Hilbert space V , a continuous and coercive bilinear form a(·, ·)
and a continuous linear functional F ∈ V ′, there exists a unique u ∈ V
such that a(u, v) = F(v), for all v ∈ V .

We will show existence and uniqueness using the Lax-Milgram lemma.
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Existence and Uniqueness

For u = (T1,T2,P1,P2), the bilinear form corresponding to (2) is

a(u, v) = α2γ2`hcω
γ − 1 〈∇T1,∇v1〉 −

α2γ2ω2

γ − 1 〈T2, v1〉+ αγω2〈P2, v1〉 (6)

+ α2γ2ω2

γ − 1 〈T1, v2〉+ α2γ2`hcω
γ − 1 〈∇T2,∇v2〉 − αγω2〈P1, v2〉

− αγ`vcω〈∇T1,∇v3〉+ αγω2〈T2, v3〉+ γ`vcω〈∇P1,∇v3〉
− γω2〈P2, v3〉+ c2〈∇P2,∇v3〉 − αγω2〈T1, v4〉 − αγ`vcω〈∇T2,∇v4〉
+ γω2〈P1, v4〉 − c2〈∇P1,∇v4〉+ γ`vcω〈∇P2,∇v4〉
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Existence and Uniqueness

Now, through repeated use of the Cauchy-Schwarz inequality we can show

a(u, v) ≤
(
α2γ2ω2

γ − 1 + αγω2 + γω2
)
‖u‖ ‖v‖

+
(
α2γ2`hcω
γ − 1 + αγ`vcω + γ`vcω + c2

)
‖∇u‖ ‖∇v‖ .
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Existence and Uniqueness

Now, through repeated use of the Cauchy-Schwarz inequality we can show

a(u, v) ≤
(
α2γ2ω2

γ − 1 + αγω2 + γω2
)
‖u‖ ‖v‖

+
(
α2γ2`hcω
γ − 1 + αγ`vcω + γ`vcω + c2

)
‖∇u‖ ‖∇v‖ .

Using the Friedrichs inequality, we have a bound in the H 1
0 norm.

a(u, v) ≤ s2
(
α2γ2ω2

γ − 1 + αγω2 + γω2
)
‖∇u‖ ‖∇v‖

+
(
α2γ2`hcω
γ − 1 + αγ`vcω + γ`vcω + c2

)
‖∇u‖ ‖∇v‖

= M ‖u‖H1
0
‖v‖H1

0
.
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Existence and Uniqueness

Theorem (Continuity)
For all positive constants c, `h , `v , α, γ and ω such that γ > 1, the rescaled
bilinear form (6) is continuous with constant

M = s2
(
α2γ2ω2

γ − 1 + αγω2 + γω2
)

+
(
α2γ2`hcω
γ − 1 + αγ`vcω + γ`vcω + c2

)

This implies well-posedness of the original problem in weak formulation.
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Existence and Uniqueness

Our choice of β simplifies our bilinear form in the coercivity estimate:

a(u, u) = α2γ2`hcω
γ − 1

(
‖∇T1‖2 + ‖∇T2‖2

)
+ γ`vcω

(
‖∇P1‖2 + ‖∇P2‖2

)
−αγ`vcω〈∇T1,∇P1〉 − αγ`vcω〈∇T2,∇P2〉.
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Existence and Uniqueness

Our choice of β simplifies our bilinear form in the coercivity definition:

a(u, u) = α2γ2`hcω
γ − 1

(
‖∇T1‖2 + ‖∇T2‖2

)
+ γ`vcω

(
‖∇P1‖2 + ‖∇P2‖2

)
−αγ`vcω〈∇T1,∇P1〉 − αγ`vcω〈∇T2,∇P2〉.

Now, the generalized Young’s inequality gives us that for any ε > 0

a(u, u) ≥
(
α2γ2`hcω
γ − 1 − αγ`vcω

2ε

)(
‖∇T1‖2 + ‖∇T2‖2)

+
(
γ`vcω − 1

2 εαγ`vcω
)(
‖∇P1‖2 + ‖∇P2‖2)

= C ‖u‖2
H1

0

for C = min
{
α2γ2`hcω
γ−1 − αγ`vcω

2ε , γ`vcω − 1
2εαγ`vcω

}
.
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Existence and Uniqueness

Remember that we must choose ε such that C > 0 in the previous result.
Enforcing this, gives the following result.

Theorem (Coercivity)

Suppose `v(γ−1)
2γ`h < 2. Then for all positive constants c, `h , `v , α, γ and ω

such that γ > 1 and
`v(γ − 1)

2αγ`h
< ε <

2
α
.

the rescaled bilinear form is coercive with constant

C = min
{
α2γ2`hcω
γ − 1 − αγ`vcω

2ε , γ`vcω − 1
2εαγ`vcω

}
.
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Error Estimates

Our previous theorems immediately give us error estimates in H 1.

Lemma (Cea’s Lemma)
Let a : V × V → R be a continuous and coercive bilinear form. For a continuous linear functional F ∈ V ′, consider the
problem of finding an element u ∈ V such that

a(u, v) = F(v), for all v ∈ V .

Now, consider the same problem on a finite dimensional subspace Vh of V such that uh ∈ Vh satisfies

a(uh , v) = F(v), for all v ∈ Vh .

By the Lax-Milgram Lemma, this problem has a unique solution and Cea’s Lemma states that

‖u − uh‖V ≤
M
C
‖u − v‖V , for all v ∈ Vh

where M and C are the continuity and coercivity constants respectively.
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Error Estimates

L2 estimates are also of interest. For these need the following assumptions:

Proposition
Given a global interpolator Ihu on the finite element space, the
corresponding shape functions have an approximation order, m, if∥∥∥u − Ihu

∥∥∥
H1

0
≤ CIh hm−1 ‖u‖Hm (7)

where CIh is independent of u and h.
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Error Estimates

Proposition (H 2 Regularity)
Suppose that u ∈ H 1(U ) is a weak solution of the elliptic PDE

Lu = f , in U

with homogeneous Dirichlet boundary conditions. Then u ∈ H 2
loc(U ) and

for any open subset V ⊂ U

‖u‖H2 ≤ CR ‖f ‖L2 .
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Error Estimates

To find L2 estimates, we consider the dual problem in terms of e = u− uh{
−α2γ2`hcω

γ−1 ∆φT − i α
2γ2ω2

γ−1 φT + αγ`vcω∆φP + iαγω2φP = eT
iαγω2φT − γ`vcω∆zP − i(γω2 + c2∆)zP = eP

This problem has the crucial property

a(e, φ) = 〈e, e〉 (8)

in terms of the original bilinear form a(·, ·).

Notice the solution φ also satisfies

‖φ‖H2 ≤ CR ‖e‖L2 .
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Error Estimates

‖e‖2L2 = 〈e, e〉
= a(e, φ), (by duality)
= a(e, φ− Ihφ) (by Galerkin Orthogonality)
≤ M ‖e‖H1

0

∥∥∥φ− Ihφ
∥∥∥

H1
0

(by continuity)

≤ MCIh h ‖e‖H1
0
‖φ‖H2 . (Approximation estimate)

≤ Kh ‖e‖H1
0

(Regularity)

≤ Kh2 ‖u‖H2 (Approximation estimate).

Theorem (L2 Error Estimate)
The FEM error in the L2 norm is of size O(h2).

B. Brennan Baylor University December 9, 2013 27 / 36



Error Estimates

‖e‖2L2 = 〈e, e〉
= a(e, φ), (by duality)
= a(e, φ− Ihφ) (by Galerkin Orthogonality)
≤ M ‖e‖H1

0

∥∥∥φ− Ihφ
∥∥∥

H1
0

(by continuity)

≤ MCIh h ‖e‖H1
0
‖φ‖H2 . (Approximation estimate)

≤ Kh ‖e‖H1
0

(Regularity)

≤ Kh2 ‖u‖H2 (Approximation estimate).

Theorem (L2 Error Estimate)
The FEM error in the L2 norm is of size O(h2).

B. Brennan Baylor University December 9, 2013 27 / 36



Numerical Results

Numerical Results

B. Brennan Baylor University December 9, 2013 28 / 36



Numerical Results

To mimic a realistic problem, the following set of physical parameters will
be used for all tests:

`h = `v = 10−6 m
c = 300 m/s
ω = 3.3e4 Hz
γ = 1.4
α = 8.8667 Pa/K.

First, we check that our method is converging at the expected rate for
order p basis funtions:

‖u − uh‖L2 = Chp+1.
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Numerical Results
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Numerical Results
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Numerical Results
MUMPS Performance:

16 Core Workstation
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Numerical Results
MUMPS Performance:

128 Node Cluster
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Summary and Future Work

In Summary:

I Surprisingly clean proof for existence and uniqueness.

I Initial numerical tests validate the model for plane wave solutions.

Future Work:

I Couple an elasticity model capturing the behaviour of the tuning fork.
I Standard linear solvers do not scale well to multi-core machines.
→ Hermitian-Skew Symmetric (HSS) splitting methods may help.
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