Well-Posedness of a Mathematical Model for Trace Gas Sensors

Brian Brennan Robert C. Kirby John Zweck Susan E. Minkoff

Baylor University

December 9, 2013

Baylor University

Mathematical Model

Existence and Uniqueness

Error Estimates

Numerical Results

Summary and Future Work

- ► A *trace gas* is a gas which makes up less than 1% of the Earth's atmosphere.
- ► A *trace gas sensor* is a very sensitize device for detecting these gases.

- ► A *trace gas* is a gas which makes up less than 1% of the Earth's atmosphere.
- ► A *trace gas sensor* is a very sensitize device for detecting these gases.
- Current Applications:
 - 1. Monitoring atmospheric pollutants
 - 2. Leak detection
 - 3. Early fire detection on spacecraft

- ► A *trace gas* is a gas which makes up less than 1% of the Earth's atmosphere.
- ► A *trace gas sensor* is a very sensitize device for detecting these gases.
- Current Applications:
 - 1. Monitoring atmospheric pollutants

- Future Applications:
 - 1. Non-invasive disease diagnosis

- 2. Leak detection
- 3. Early fire detection on spacecraft

Figure: Trace gas sensor resting on the tip of a finger.

Baylor University

Photo-acoustic Spectroscopy:

We fire a modulated laser between the tines of a quartz tuning fork.

- We fire a modulated laser between the tines of a quartz tuning fork.
- Present gas molecules become excited.

- We fire a modulated laser between the tines of a quartz tuning fork.
- Present gas molecules become excited.
- Thermal and pressure waves are generated.

- We fire a modulated laser between the tines of a quartz tuning fork.
- Present gas molecules become excited.
- Thermal and pressure waves are generated.
- Electrodes on the the tuning fork convert waves to electric current.

- We fire a modulated laser between the tines of a quartz tuning fork.
- Present gas molecules become excited.
- Thermal and pressure waves are generated.
- Electrodes on the the tuning fork convert waves to electric current.
- The amplitude of the current determines the amount of gas present.

 Resonant Optothermoacoustic Detection (ROTADE) sensors capture only the thermal wave.

- Resonant Optothermoacoustic Detection (ROTADE) sensors capture only the thermal wave.
- Quartz-Enhanced Photoacoustic Spectroscopy (QEPAS) sensors capture only the pressure wave.

Introduction to Trace Gas Sensing Current Models:

- Resonant Optothermoacoustic Detection (ROTADE) sensors capture only the thermal wave.
- Quartz-Enhanced Photoacoustic Spectroscopy (QEPAS) sensors capture only the pressure wave.

We seek a model which captures both effects simultaneously.

Mathematical Model

Coupled pressure-temperature equations of gas:

$$\begin{cases} \frac{\partial}{\partial t} \left(T - \frac{\gamma - 1}{\gamma \alpha} P \right) - \ell_h c \Delta T = S(x, t) \\ \gamma \left(\frac{\partial^2}{\partial t^2} - \ell_v c \frac{\partial}{\partial t} \Delta \right) (P - \alpha T) - c^2 \Delta P = 0 \quad \text{in } \mathbb{R}^2 \backslash \Omega_{TF} \quad \text{(1b)} \end{cases}$$

- T: temperature
- S: cylindrically sym. Gaussian heat source
- ℓ_h : heat conduction parameter α : $\left(\frac{\partial P}{\partial T}\right)_{\mu}$.
- A: proportional to gas concentration

- *P*: pressure
- c: sound speed
- ℓ_v : viscosity parameter
- $\gamma: rac{c_p}{c_v}$
- ω : QTF resonance frequency

With a time harmonic source term, we can simplify (1) to the time-independent Helmholtz equations:

$$\begin{cases} -i\beta\omega\left(T - \frac{\gamma - 1}{\gamma\alpha}P\right) - \beta\ell_h c\Delta T = S \\ -\gamma(\omega^2 - i\ell_v c\omega\Delta)(P - \alpha T) - c^2\Delta P = 0 \end{cases}$$
(2a) (2b)

where
$$eta=rac{lpha^2\gamma^2\omega}{\gamma-1}$$
, $T=T_1+iT_2$ and $P=P_1+iP_2.$

It will be convenient to view (2) as a system of four partial differential equations of the form Au = b, where

$$A = \begin{pmatrix} -\beta\ell_h c\Delta & \beta\omega & 0 & -\alpha\gamma\omega^2 \\ -\beta\omega & -\beta\ell_h c\Delta & \alpha\gamma\omega^2 & 0 \\ \alpha\gamma\ell_v c\omega\Delta & -\alpha\gamma\omega^2 & -\gamma\ell_v c\omega\Delta & \gamma\omega^2 + c^2\Delta \\ \alpha\gamma\omega^2 & \alpha\gamma\ell_v c\omega\Delta & -(\gamma\omega^2 + c^2\Delta) & -\gamma\ell_v c\omega\Delta \end{pmatrix}$$
(3)

where $u = (T_1, T_2, P_1, P_2)^T$ and $b = (S, 0, 0, 0)^T$.

Definition

A bilinear form a(u, v) on a normed linear space H is said to be **continuous** on $V \subset H$ if there exists some M > 0 such that

$$|a(u,v)| \le M \|u\|_H \|v\|_H$$
, for all $u, v \in V$.

and **coercive** on $V \subset H$ if there exists some C > 0 such that

$$a(v,v) \ge C \|v\|_H^2, \qquad \text{for all } v \in V.$$
(5)

(4)

Lemma (Lax-Milgram)

Given a Hilbert space V, a continuous and coercive bilinear form $a(\cdot, \cdot)$ and a continuous linear functional $F \in V'$, there exists a unique $u \in V$ such that a(u, v) = F(v), for all $v \in V$.

We will show existence and uniqueness using the Lax-Milgram lemma.

For $u = (T_1, T_2, P_1, P_2)$, the bilinear form corresponding to (2) is

$$a(u, v) = \frac{\alpha^2 \gamma^2 \ell_h c\omega}{\gamma - 1} \langle \nabla T_1, \nabla v_1 \rangle - \frac{\alpha^2 \gamma^2 \omega^2}{\gamma - 1} \langle T_2, v_1 \rangle + \alpha \gamma \omega^2 \langle P_2, v_1 \rangle$$

$$+ \frac{\alpha^2 \gamma^2 \omega^2}{\gamma - 1} \langle T_1, v_2 \rangle + \frac{\alpha^2 \gamma^2 \ell_h c\omega}{\gamma - 1} \langle \nabla T_2, \nabla v_2 \rangle - \alpha \gamma \omega^2 \langle P_1, v_2 \rangle$$

$$- \alpha \gamma \ell_v c\omega \langle \nabla T_1, \nabla v_3 \rangle + \alpha \gamma \omega^2 \langle T_2, v_3 \rangle + \gamma \ell_v c\omega \langle \nabla P_1, \nabla v_3 \rangle$$

$$- \gamma \omega^2 \langle P_2, v_3 \rangle + c^2 \langle \nabla P_2, \nabla v_3 \rangle - \alpha \gamma \omega^2 \langle T_1, v_4 \rangle - \alpha \gamma \ell_v c\omega \langle \nabla T_2, \nabla v_4 \rangle$$

$$+ \gamma \omega^2 \langle P_1, v_4 \rangle - c^2 \langle \nabla P_1, \nabla v_4 \rangle + \gamma \ell_v c\omega \langle \nabla P_2, \nabla v_4 \rangle$$
(6)

Now, through repeated use of the Cauchy-Schwarz inequality we can show

$$\begin{aligned} a(u,v) &\leq \left(\frac{\alpha^2 \gamma^2 \omega^2}{\gamma - 1} + \alpha \gamma \omega^2 + \gamma \omega^2\right) \|u\| \|v\| \\ &+ \left(\frac{\alpha^2 \gamma^2 \ell_h c\omega}{\gamma - 1} + \alpha \gamma \ell_v c\omega + \gamma \ell_v c\omega + c^2\right) \|\nabla u\| \|\nabla v\|. \end{aligned}$$

Now, through repeated use of the Cauchy-Schwarz inequality we can show

$$\begin{aligned} a(u,v) &\leq \left(\frac{\alpha^2 \gamma^2 \omega^2}{\gamma - 1} + \alpha \gamma \omega^2 + \gamma \omega^2\right) \|\boldsymbol{u}\| \|\boldsymbol{v}\| \\ &+ \left(\frac{\alpha^2 \gamma^2 \ell_h c \omega}{\gamma - 1} + \alpha \gamma \ell_v c \omega + \gamma \ell_v c \omega + c^2\right) \|\nabla \boldsymbol{u}\| \|\nabla \boldsymbol{v}\|. \end{aligned}$$

Using the Friedrichs inequality, we have a bound in the H_0^1 norm.

$$\begin{aligned} a(u,v) &\leq s^2 \left(\frac{\alpha^2 \gamma^2 \omega^2}{\gamma - 1} + \alpha \gamma \omega^2 + \gamma \omega^2 \right) \|\nabla u\| \|\nabla v\| \\ &+ \left(\frac{\alpha^2 \gamma^2 \ell_h c \omega}{\gamma - 1} + \alpha \gamma \ell_v c \omega + \gamma \ell_v c \omega + c^2 \right) \|\nabla u\| \|\nabla v\| \\ &= M \|u\|_{H_0^1} \|v\|_{H_0^1} \,. \end{aligned}$$

Theorem (Continuity)

For all positive constants $c, \ell_h, \ell_v, \alpha, \gamma$ and ω such that $\gamma > 1$, the rescaled bilinear form (6) is continuous with constant

$$M = s^2 \left(\frac{\alpha^2 \gamma^2 \omega^2}{\gamma - 1} + \alpha \gamma \omega^2 + \gamma \omega^2 \right) + \left(\frac{\alpha^2 \gamma^2 \ell_h c \omega}{\gamma - 1} + \alpha \gamma \ell_v c \omega + \gamma \ell_v c \omega + c^2 \right)$$

This implies well-posedness of the original problem in weak formulation.

Our choice of β simplifies our bilinear form in the coercivity estimate:

$$a(u, u) = \frac{\alpha^2 \gamma^2 \ell_h c\omega}{\gamma - 1} \left(\|\nabla T_1\|^2 + \|\nabla T_2\|^2 \right) + \gamma \ell_v c\omega \left(\|\nabla P_1\|^2 + \|\nabla P_2\|^2 \right) -\alpha \gamma \ell_v c\omega \langle \nabla T_1, \nabla P_1 \rangle - \alpha \gamma \ell_v c\omega \langle \nabla T_2, \nabla P_2 \rangle.$$

Our choice of β simplifies our bilinear form in the coercivity definition:

$$a(u, u) = \frac{\alpha^2 \gamma^2 \ell_h c\omega}{\gamma - 1} \left(\|\nabla T_1\|^2 + \|\nabla T_2\|^2 \right) + \gamma \ell_v c\omega \left(\|\nabla P_1\|^2 + \|\nabla P_2\|^2 \right) -\alpha \gamma \ell_v c\omega \langle \nabla T_1, \nabla P_1 \rangle - \alpha \gamma \ell_v c\omega \langle \nabla T_2, \nabla P_2 \rangle.$$

Now, the generalized Young's inequality gives us that for any $\epsilon>0$

$$a(u, u) \geq \left(\frac{\alpha^2 \gamma^2 \ell_h c\omega}{\gamma - 1} - \frac{\alpha \gamma \ell_v c\omega}{2\epsilon}\right) \left(\|\nabla T_1\|^2 + \|\nabla T_2\|^2\right) \\ + \left(\gamma \ell_v c\omega - \frac{1}{2} \epsilon \alpha \gamma \ell_v c\omega\right) \left(\|\nabla P_1\|^2 + \|\nabla P_2\|^2\right) \\ = C \|u\|_{H_0^1}^2$$

for
$$C = \min\left\{\frac{\alpha^2 \gamma^2 \ell_h c \omega}{\gamma - 1} - \frac{\alpha \gamma \ell_v c \omega}{2\epsilon}, \ \gamma \ell_v c \omega - \frac{1}{2} \epsilon \alpha \gamma \ell_v c \omega\right\}.$$

B. Brennan

Baylor University

Remember that we must choose ϵ such that C > 0 in the previous result. Enforcing this, gives the following result.

Remember that we must choose ϵ such that C > 0 in the previous result. Enforcing this, gives the following result.

Theorem (Coercivity)

Suppose $\frac{\ell_v(\gamma-1)}{2\gamma\ell_h} < 2$. Then for all positive constants $c, \ell_h, \ell_v, \alpha, \gamma$ and ω such that $\gamma > 1$ and

$$\frac{\ell_v(\gamma-1)}{2\alpha\gamma\ell_h} < \epsilon < \frac{2}{\alpha}.$$

the rescaled bilinear form is coercive with constant

$$C = \min\left\{\frac{\alpha^2 \gamma^2 \ell_h c\omega}{\gamma - 1} - \frac{\alpha \gamma \ell_v c\omega}{2\epsilon}, \ \gamma \ell_v c\omega - \frac{1}{2} \epsilon \alpha \gamma \ell_v c\omega\right\}.$$

Error Estimates

Our previous theorems immediately give us error estimates in H^1 .

Lemma (Cea's Lemma)

Let $a : V \times V \to \mathbb{R}$ be a continuous and coercive bilinear form. For a continuous linear functional $F \in V'$, consider the problem of finding an element $u \in V$ such that

a(u, v) = F(v), for all $v \in V.$

Now, consider the same problem on a finite dimensional subspace V_h of V such that $u_h \in V_h$ satisfies

 $a(u_h, v) = F(v),$ for all $v \in V_h$.

By the Lax-Milgram Lemma, this problem has a unique solution and Cea's Lemma states that

$$\|u - u_h\|_V \le \frac{M}{C} \|u - v\|_V$$
, for all $v \in V_h$

where M and C are the continuity and coercivity constants respectively.

B. Brennan

December 9, 2013 23 / 36

 L^2 estimates are also of interest. For these need the following assumptions:

Proposition

Given a global interpolator $\mathcal{I}^h u$ on the finite element space, the corresponding shape functions have an approximation order, m, if

$$\left\| u - \mathcal{I}^{h} u \right\|_{H_{0}^{1}} \le C_{\mathcal{I}^{h}} h^{m-1} \left\| u \right\|_{H^{m}}$$
 (7)

where $C_{\mathcal{I}^h}$ is independent of u and h.

Proposition (H^2 Regularity)

Suppose that $u \in H^1(U)$ is a weak solution of the elliptic PDE

$$Lu = f,$$
 in U

with homogeneous Dirichlet boundary conditions. Then $u \in H^2_{loc}(U)$ and for any open subset $V \subset U$

$$||u||_{H^2} \le C_R ||f||_{L^2}.$$

To find L^2 estimates, we consider the dual problem in terms of $e = u - u_h$

$$\begin{cases} -\frac{\alpha^2 \gamma^2 \ell_h c\omega}{\gamma - 1} \Delta \phi_T - i \frac{\alpha^2 \gamma^2 \omega^2}{\gamma - 1} \phi_T + \alpha \gamma \ell_v c\omega \Delta \phi_P + i \alpha \gamma \omega^2 \phi_P = e_T \\ i \alpha \gamma \omega^2 \phi_T - \gamma \ell_v c \omega \Delta z_P - i (\gamma \omega^2 + c^2 \Delta) z_P = e_P \end{cases}$$

To find L^2 estimates, we consider the dual problem in terms of $e = u - u_h$

$$\begin{cases} -\frac{\alpha^2 \gamma^2 \ell_h c\omega}{\gamma - 1} \Delta \phi_T - i \frac{\alpha^2 \gamma^2 \omega^2}{\gamma - 1} \phi_T + \alpha \gamma \ell_v c\omega \Delta \phi_P + i \alpha \gamma \omega^2 \phi_P = e_T \\ i \alpha \gamma \omega^2 \phi_T - \gamma \ell_v c \omega \Delta z_P - i (\gamma \omega^2 + c^2 \Delta) z_P = e_P \end{cases}$$

This problem has the crucial property

$$a(e,\phi) = \langle e, e \rangle \tag{8}$$

in terms of the original bilinear form $a(\cdot, \cdot)$.

To find L^2 estimates, we consider the dual problem in terms of $e = u - u_h$

$$\begin{cases} -\frac{\alpha^2 \gamma^2 \ell_h c\omega}{\gamma - 1} \Delta \phi_T - i \frac{\alpha^2 \gamma^2 \omega^2}{\gamma - 1} \phi_T + \alpha \gamma \ell_v c \omega \Delta \phi_P + i \alpha \gamma \omega^2 \phi_P = e_T \\ i \alpha \gamma \omega^2 \phi_T - \gamma \ell_v c \omega \Delta z_P - i (\gamma \omega^2 + c^2 \Delta) z_P = e_P \end{cases}$$

This problem has the crucial property

$$a(e,\phi) = \langle e, e \rangle \tag{8}$$

in terms of the original bilinear form $a(\cdot, \cdot)$.

Notice the solution ϕ also satisfies

$$\|\phi\|_{H^2} \le C_R \,\|e\|_{L^2} \,.$$

B. Brennan

Baylor University

$$\begin{split} \|e\|_{L^{2}}^{2} &= \langle e, e \rangle \\ &= a(e, \phi), \\ &= a(e, \phi - \mathcal{I}^{h} \phi) \\ &\leq M \|e\|_{H_{0}^{1}} \left\| \phi - \mathcal{I}^{h} \phi \right\|_{H_{0}^{1}} \\ &\leq MC_{\mathcal{I}^{h}} h \|e\|_{H_{0}^{1}} \|\phi\|_{H^{2}} \\ &\leq Kh \|e\|_{H_{0}^{1}} \\ &\leq Kh^{2} \|u\|_{H^{2}} \end{split}$$

(by duality)
(by Galerkin Orthogonality)
(by continuity)
(Approximation estimate)
(Regularity)
(Approximation estimate).

$$\begin{split} \|e\|_{L^{2}}^{2} &= \langle e, e \rangle \\ &= a(e, \phi), \\ &= a(e, \phi - \mathcal{I}^{h} \phi) \\ &\leq M \|e\|_{H_{0}^{1}} \left\| \phi - \mathcal{I}^{h} \phi \right\|_{H_{0}^{1}} \\ &\leq MC_{\mathcal{I}^{h}} h \|e\|_{H_{0}^{1}} \|\phi\|_{H^{2}} . \\ &\leq Kh \|e\|_{H_{0}^{1}} \\ &\leq Kh^{2} \|u\|_{H^{2}} \end{split}$$

(by duality)(by Galerkin Orthogonality)(by continuity)(Approximation estimate)(Regularity)(Approximation estimate).

Theorem (L^2 Error Estimate)

The FEM error in the L^2 norm is of size $\mathcal{O}(h^2)$.

To mimic a realistic problem, the following set of physical parameters will be used for all tests:

$$\ell_h = \ell_v = 10^{-6} \text{ m}$$

 $c = 300 \text{ m/s}$
 $\omega = 3.3e4 \text{ Hz}$
 $\gamma = 1.4$
 $\alpha = 8.8667 \text{ Pa/K}.$

To mimic a realistic problem, the following set of physical parameters will be used for all tests:

$$\ell_h = \ell_v = 10^{-6} \text{ m}$$

 $c = 300 \text{ m/s}$
 $\omega = 3.3e4 \text{ Hz}$
 $\gamma = 1.4$
 $\alpha = 8.8667 \text{ Pa/K}.$

First, we check that our method is converging at the expected rate for order p basis functions:

$$||u - u_h||_{L^2} = Ch^{p+1}.$$

16 Core Workstation

128 Node Cluster

Figure: Weak scaling with a fixed 256×256 problem size per processor.

Figure: Strong scaling for a fixed problem size of 1024×1024 .

Summary and Future Work

Summary and Future Work

Summary and Future Work

In Summary:

Surprisingly clean proof for existence and uniqueness.

- Surprisingly clean proof for existence and uniqueness.
- Initial numerical tests validate the model for plane wave solutions.

- Surprisingly clean proof for existence and uniqueness.
- Initial numerical tests validate the model for plane wave solutions.

Future Work:

Couple an elasticity model capturing the behaviour of the tuning fork.

- Surprisingly clean proof for existence and uniqueness.
- Initial numerical tests validate the model for plane wave solutions.

Future Work:

- Couple an elasticity model capturing the behaviour of the tuning fork.
- Standard linear solvers do not scale well to multi-core machines.

- Surprisingly clean proof for existence and uniqueness.
- Initial numerical tests validate the model for plane wave solutions.

Future Work:

- Couple an elasticity model capturing the behaviour of the tuning fork.
- Standard linear solvers do not scale well to multi-core machines.
 - \rightarrow Hermitian-Skew Symmetric (HSS) splitting methods may help.

