Well-Posedness of a Mathematical Model for Trace Gas Sensors

Brian Brennan Robert C. Kirby John Zweck Susan E. Minkoff

Baylor University

December 9, 2013

Introduction to Trace Gas Sensing

Mathematical Model

Existence and Uniqueness

Error Estimates

Numerical Results

Summary and Future Work

Introduction to Trace Gas Sensing

Introduction to Trace Gas Sensing

Introduction to Trace Gas Sensing

- A trace gas is a gas which makes up less than 1% of the Earth's atmosphere.
- A trace gas sensor is a very sensitize device for detecting these gases.

Introduction to Trace Gas Sensing

- A trace gas is a gas which makes up less than 1% of the Earth's atmosphere.
- A trace gas sensor is a very sensitize device for detecting these gases.
- Current Applications:

1. Monitoring atmospheric pollutants
2. Leak detection
3. Early fire detection on spacecraft

Introduction to Trace Gas Sensing

- A trace gas is a gas which makes up less than 1% of the Earth's atmosphere.
- A trace gas sensor is a very sensitize device for detecting these gases.
- Current Applications:

1. Monitoring atmospheric pollutants
2. Leak detection
3. Early fire detection on spacecraft

- Future Applications:

1. Non-invasive disease diagnosis

Introduction to Trace Gas Sensing

Figure: Trace gas sensor resting on the tip of a finger.

Introduction to Trace Gas Sensing

Photo-acoustic Spectroscopy:

- We fire a modulated laser between the tines of a quartz tuning fork.

Introduction to Trace Gas Sensing

Photo-acoustic Spectroscopy:

- We fire a modulated laser between the tines of a quartz tuning fork.
- Present gas molecules become excited.

Introduction to Trace Gas Sensing

Photo-acoustic Spectroscopy:

- We fire a modulated laser between the tines of a quartz tuning fork.
- Present gas molecules become excited.
- Thermal and pressure waves are generated.

Introduction to Trace Gas Sensing

Photo-acoustic Spectroscopy:

- We fire a modulated laser between the tines of a quartz tuning fork.
- Present gas molecules become excited.
- Thermal and pressure waves are generated.
- Electrodes on the the tuning fork convert waves to electric current.

Introduction to Trace Gas Sensing

Photo-acoustic Spectroscopy:

- We fire a modulated laser between the tines of a quartz tuning fork.
- Present gas molecules become excited.
- Thermal and pressure waves are generated.
- Electrodes on the the tuning fork convert waves to electric current.
- The amplitude of the current determines the amount of gas present.

Introduction to Trace Gas Sensing

Current Models:

- Resonant Optothermoacoustic Detection (ROTADE) sensors capture only the thermal wave.

Introduction to Trace Gas Sensing

Current Models:

- Resonant Optothermoacoustic Detection (ROTADE) sensors capture only the thermal wave.
- Quartz-Enhanced Photoacoustic Spectroscopy (QEPAS) sensors capture only the pressure wave.

Introduction to Trace Gas Sensing

 Current Models:- Resonant Optothermoacoustic Detection (ROTADE) sensors capture only the thermal wave.
- Quartz-Enhanced Photoacoustic Spectroscopy (QEPAS) sensors capture only the pressure wave.

We seek a model which captures both effects simultaneously.

Mathematical Model

Mathematical Model

Mathematical Model

Coupled pressure-temperature equations of gas:

$$
\left\{\begin{array}{l}
\frac{\partial}{\partial t}\left(T-\frac{\gamma-1}{\gamma \alpha} P\right)-\ell_{h} c \Delta T=S(x, t) \tag{1a}\\
\gamma\left(\frac{\partial^{2}}{\partial t^{2}}-\ell_{v} c \frac{\partial}{\partial t} \Delta\right)(P-\alpha T)-c^{2} \Delta P=0 \quad \text { in } \mathbb{R}^{2} \backslash \Omega_{T F}
\end{array}\right.
$$

T: temperature
S : cylindrically sym. Gaussian heat source
ℓ_{h} : heat conduction parameter
$\alpha:\left(\frac{\partial P}{\partial T}\right)_{v}$
A: proportional to gas concentration
P : pressure
c : sound speed
ℓ_{v} : viscosity parameter
$\gamma: \frac{c_{p}}{c_{v}}$
ω : QTF resonance frequency

Mathematical Model

With a time harmonic source term, we can simplify (1) to the time-independent Helmholtz equations:

$$
\left\{\begin{array}{l}
-i \beta \omega\left(T-\frac{\gamma-1}{\gamma \alpha} P\right)-\beta \ell_{h} c \Delta T=S \tag{2a}\\
-\gamma\left(\omega^{2}-i \ell_{v} c \omega \Delta\right)(P-\alpha T)-c^{2} \Delta P=0
\end{array}\right.
$$

where $\beta=\frac{\alpha^{2} \gamma^{2} \omega}{\gamma-1}, T=T_{1}+i T_{2}$ and $P=P_{1}+i P_{2}$.

Mathematical Model

It will be convenient to view (2) as a system of four partial differential equations of the form $A u=b$, where

$$
A=\left(\begin{array}{cccc}
-\beta \ell_{h} c \Delta & \beta \omega & 0 & -\alpha \gamma \omega^{2} \tag{3}\\
-\beta \omega & -\beta \ell_{h} c \Delta & \alpha \gamma \omega^{2} & 0 \\
\alpha \gamma \ell_{v} c \omega \Delta & -\alpha \gamma \omega^{2} & -\gamma \ell_{v} c \omega \Delta & \gamma \omega^{2}+c^{2} \Delta \\
\alpha \gamma \omega^{2} & \alpha \gamma \ell_{v} c \omega \Delta & -\left(\gamma \omega^{2}+c^{2} \Delta\right) & -\gamma \ell_{v} c \omega \Delta
\end{array}\right)
$$

where $u=\left(T_{1}, T_{2}, P_{1}, P_{2}\right)^{T}$ and $b=(S, 0,0,0)^{T}$.

Existence and Uniqueness

Existence and Uniqueness

Existence and Uniqueness

Definition

A bilinear form $a(u, v)$ on a normed linear space H is said to be continuous on $V \subset H$ if there exists some $M>0$ such that

$$
\begin{equation*}
|a(u, v)| \leq M\|u\|_{H}\|v\|_{H}, \quad \text { for all } u, v \in V \tag{4}
\end{equation*}
$$

and coercive on $V \subset H$ if there exists some $C>0$ such that

$$
\begin{equation*}
a(v, v) \geq C\|v\|_{H}^{2}, \quad \text { for all } v \in V \tag{5}
\end{equation*}
$$

Existence and Uniqueness

Lemma (Lax-Milgram)

Given a Hilbert space V, a continuous and coercive bilinear form $a(\cdot, \cdot)$ and a continuous linear functional $F \in V^{\prime}$, there exists a unique $u \in V$ such that $a(u, v)=F(v)$, for all $v \in V$.

We will show existence and uniqueness using the Lax-Milgram lemma.

Existence and Uniqueness

For $u=\left(T_{1}, T_{2}, P_{1}, P_{2}\right)$, the bilinear form corresponding to (2) is

$$
\begin{align*}
a(u, v) & =\frac{\alpha^{2} \gamma^{2} \ell_{h} c \omega}{\gamma-1}\left\langle\nabla T_{1}, \nabla v_{1}\right\rangle-\frac{\alpha^{2} \gamma^{2} \omega^{2}}{\gamma-1}\left\langle T_{2}, v_{1}\right\rangle+\alpha \gamma \omega^{2}\left\langle P_{2}, v_{1}\right\rangle \tag{6}\\
& +\frac{\alpha^{2} \gamma^{2} \omega^{2}}{\gamma-1}\left\langle T_{1}, v_{2}\right\rangle+\frac{\alpha^{2} \gamma^{2} \ell_{h} c \omega}{\gamma-1}\left\langle\nabla T_{2}, \nabla v_{2}\right\rangle-\alpha \gamma \omega^{2}\left\langle P_{1}, v_{2}\right\rangle \\
& -\alpha \gamma \ell_{v} c \omega\left\langle\nabla T_{1}, \nabla v_{3}\right\rangle+\alpha \gamma \omega^{2}\left\langle T_{2}, v_{3}\right\rangle+\gamma \ell_{v} c \omega\left\langle\nabla P_{1}, \nabla v_{3}\right\rangle \\
& -\gamma \omega^{2}\left\langle P_{2}, v_{3}\right\rangle+c^{2}\left\langle\nabla P_{2}, \nabla v_{3}\right\rangle-\alpha \gamma \omega^{2}\left\langle T_{1}, v_{4}\right\rangle-\alpha \gamma \ell_{v} c \omega\left\langle\nabla T_{2}, \nabla v_{4}\right\rangle \\
& +\gamma \omega^{2}\left\langle P_{1}, v_{4}\right\rangle-c^{2}\left\langle\nabla P_{1}, \nabla v_{4}\right\rangle+\gamma \ell_{v} c \omega\left\langle\nabla P_{2}, \nabla v_{4}\right\rangle
\end{align*}
$$

Existence and Uniqueness

Now, through repeated use of the Cauchy-Schwarz inequality we can show

$$
\begin{aligned}
a(u, v) & \leq\left(\frac{\alpha^{2} \gamma^{2} \omega^{2}}{\gamma-1}+\alpha \gamma \omega^{2}+\gamma \omega^{2}\right)\|u\|\|v\| \\
& +\left(\frac{\alpha^{2} \gamma^{2} \ell_{h} c \omega}{\gamma-1}+\alpha \gamma \ell_{v} c \omega+\gamma \ell_{v} c \omega+c^{2}\right)\|\nabla u\|\|\nabla v\| .
\end{aligned}
$$

Existence and Uniqueness

Now, through repeated use of the Cauchy-Schwarz inequality we can show

$$
\begin{aligned}
a(u, v) & \leq\left(\frac{\alpha^{2} \gamma^{2} \omega^{2}}{\gamma-1}+\alpha \gamma \omega^{2}+\gamma \omega^{2}\right)\|u\|\|v\| \\
& +\left(\frac{\alpha^{2} \gamma^{2} \ell_{h} c \omega}{\gamma-1}+\alpha \gamma \ell_{v} c \omega+\gamma \ell_{v} c \omega+c^{2}\right)\|\nabla u\|\|\nabla v\| .
\end{aligned}
$$

Using the Friedrichs inequality, we have a bound in the H_{0}^{1} norm.

$$
\begin{aligned}
a(u, v) \leq & s^{2}\left(\frac{\alpha^{2} \gamma^{2} \omega^{2}}{\gamma-1}+\alpha \gamma \omega^{2}+\gamma \omega^{2}\right)\|\nabla u\|\|\nabla v\| \\
& +\left(\frac{\alpha^{2} \gamma^{2} \ell_{h} c \omega}{\gamma-1}+\alpha \gamma \ell_{v} c \omega+\gamma \ell_{v} c \omega+c^{2}\right)\|\nabla u\|\|\nabla v\| \\
= & M\|u\|_{H_{0}^{1}}\|v\|_{H_{0}^{1}}
\end{aligned}
$$

Existence and Uniqueness

Theorem (Continuity)

For all positive constants $c, \ell_{h}, \ell_{v}, \alpha, \gamma$ and ω such that $\gamma>1$, the rescaled bilinear form (6) is continuous with constant
$M=s^{2}\left(\frac{\alpha^{2} \gamma^{2} \omega^{2}}{\gamma-1}+\alpha \gamma \omega^{2}+\gamma \omega^{2}\right)+\left(\frac{\alpha^{2} \gamma^{2} \ell_{h} c \omega}{\gamma-1}+\alpha \gamma \ell_{v} c \omega+\gamma \ell_{v} c \omega+c^{2}\right)$

This implies well-posedness of the original problem in weak formulation.

Existence and Uniqueness

Our choice of β simplifies our bilinear form in the coercivity estimate:

$$
\begin{aligned}
a(u, u)= & \frac{\alpha^{2} \gamma^{2} \ell_{h} c \omega}{\gamma-1}\left(\left\|\nabla T_{1}\right\|^{2}+\left\|\nabla T_{2}\right\|^{2}\right)+\gamma \ell_{v} c \omega\left(\left\|\nabla P_{1}\right\|^{2}+\left\|\nabla P_{2}\right\|^{2}\right) \\
& -\alpha \gamma \ell_{v} c \omega\left\langle\nabla T_{1}, \nabla P_{1}\right\rangle-\alpha \gamma \ell_{v} c \omega\left\langle\nabla T_{2}, \nabla P_{2}\right\rangle .
\end{aligned}
$$

Existence and Uniqueness

Our choice of β simplifies our bilinear form in the coercivity definition:

$$
\begin{aligned}
a(u, u)= & \frac{\alpha^{2} \gamma^{2} \ell_{h} c \omega}{\gamma-1}\left(\left\|\nabla T_{1}\right\|^{2}+\left\|\nabla T_{2}\right\|^{2}\right)+\gamma \ell_{v} c \omega\left(\left\|\nabla P_{1}\right\|^{2}+\left\|\nabla P_{2}\right\|^{2}\right) \\
& -\alpha \gamma \ell_{v} c \omega\left\langle\nabla T_{1}, \nabla P_{1}\right\rangle-\alpha \gamma \ell_{v} c \omega\left\langle\nabla T_{2}, \nabla P_{2}\right\rangle .
\end{aligned}
$$

Now, the generalized Young's inequality gives us that for any $\epsilon>0$

$$
\begin{aligned}
a(u, u) \geq & \left(\frac{\alpha^{2} \gamma^{2} \ell_{h} c \omega}{\gamma-1}-\frac{\alpha \gamma \ell_{v} c \omega}{2 \epsilon}\right)\left(\left\|\nabla T_{1}\right\|^{2}+\left\|\nabla T_{2}\right\|^{2}\right) \\
& +\left(\gamma \ell_{v} c \omega-\frac{1}{2} \epsilon \alpha \gamma \ell_{v} c \omega\right)\left(\left\|\nabla P_{1}\right\|^{2}+\left\|\nabla P_{2}\right\|^{2}\right) \\
= & C\|u\|_{H_{0}^{1}}^{2}
\end{aligned}
$$

for $C=\min \left\{\frac{\alpha^{2} \gamma^{2} \ell_{h} c \omega}{\gamma-1}-\frac{\alpha \gamma \ell_{v} c \omega}{2 \epsilon}, \gamma \ell_{v} c \omega-\frac{1}{2} \epsilon \alpha \gamma \ell_{v} c \omega\right\}$.

Existence and Uniqueness

Remember that we must choose ϵ such that $C>0$ in the previous result. Enforcing this, gives the following result.

Existence and Uniqueness

Remember that we must choose ϵ such that $C>0$ in the previous result. Enforcing this, gives the following result.

Theorem (Coercivity)

Suppose $\frac{\ell_{v}(\gamma-1)}{2 \gamma \ell_{h}}<2$. Then for all positive constants $c, \ell_{h}, \ell_{v}, \alpha, \gamma$ and ω such that $\gamma>1$ and

$$
\frac{\ell_{v}(\gamma-1)}{2 \alpha \gamma \ell_{h}}<\epsilon<\frac{2}{\alpha} .
$$

the rescaled bilinear form is coercive with constant

$$
C=\min \left\{\frac{\alpha^{2} \gamma^{2} \ell_{h} c \omega}{\gamma-1}-\frac{\alpha \gamma \ell_{v} c \omega}{2 \epsilon}, \gamma \ell_{v} c \omega-\frac{1}{2} \epsilon \alpha \gamma \ell_{v} c \omega\right\} .
$$

Error Estimates

Error Estimates

Error Estimates

Our previous theorems immediately give us error estimates in H^{1}.

Lemma (Cea's Lemma)

Let $a: V \times V \rightarrow \mathbb{R}$ be a continuous and coercive bilinear form. For a continuous linear functional $F \in V^{\prime}$, consider the problem of finding an element $u \in V$ such that

$$
a(u, v)=F(v), \quad \text { for all } v \in V
$$

Now, consider the same problem on a finite dimensional subspace V_{h} of V such that $u_{h} \in V_{h}$ satisfies

$$
a\left(u_{h}, v\right)=F(v), \quad \text { for all } v \in V_{h}
$$

By the Lax-Milgram Lemma, this problem has a unique solution and Cea's Lemma states that

$$
\left\|u-u_{h}\right\|_{V} \leq \frac{M}{C}\|u-v\|_{V}, \quad \text { for all } v \in V_{h}
$$

where M and C are the continuity and coercivity constants respectively.

Error Estimates

L^{2} estimates are also of interest. For these need the following assumptions:

Proposition

Given a global interpolator $\mathcal{I}^{h} u$ on the finite element space, the corresponding shape functions have an approximation order, m, if

$$
\begin{equation*}
\left\|u-\mathcal{I}^{h} u\right\|_{H_{0}^{1}} \leq C_{\mathcal{I}^{h}} h^{m-1}\|u\|_{H^{m}} \tag{7}
\end{equation*}
$$

where $C_{\mathcal{I}^{h}}$ is independent of u and h.

Error Estimates

Proposition (H^{2} Regularity)

Suppose that $u \in H^{1}(U)$ is a weak solution of the elliptic PDE

$$
L u=f, \quad \text { in } U
$$

with homogeneous Dirichlet boundary conditions. Then $u \in H_{l o c}^{2}(U)$ and for any open subset $V \subset U$

$$
\|u\|_{H^{2}} \leq C_{R}\|f\|_{L^{2}} .
$$

Error Estimates

To find L^{2} estimates, we consider the dual problem in terms of $e=u-u_{h}$

$$
\left\{\begin{array}{l}
-\frac{\alpha^{2} \gamma^{2} \ell_{h} c \omega}{\gamma-1} \Delta \phi_{T}-i \frac{\alpha^{2} \gamma^{2} \omega^{2}}{\gamma-1} \phi_{T}+\alpha \gamma \ell_{v} c \omega \Delta \phi_{P}+i \alpha \gamma \omega^{2} \phi_{P}=e_{T} \\
i \alpha \gamma \omega^{2} \phi_{T}-\gamma \ell_{v} c \omega \Delta z_{P}-i\left(\gamma \omega^{2}+c^{2} \Delta\right) z_{P}=e_{P}
\end{array}\right.
$$

Error Estimates

To find L^{2} estimates, we consider the dual problem in terms of $e=u-u_{h}$

$$
\left\{\begin{array}{l}
-\frac{\alpha^{2} \gamma^{2} \ell_{h} c \omega}{\gamma-1} \Delta \phi_{T}-i \frac{\alpha^{2} \gamma^{2} \omega^{2}}{\gamma-1} \phi_{T}+\alpha \gamma \ell_{v} c \omega \Delta \phi_{P}+i \alpha \gamma \omega^{2} \phi_{P}=e_{T} \\
i \alpha \gamma \omega^{2} \phi_{T}-\gamma \ell_{v} c \omega \Delta z_{P}-i\left(\gamma \omega^{2}+c^{2} \Delta\right) z_{P}=e_{P}
\end{array}\right.
$$

This problem has the crucial property

$$
\begin{equation*}
a(e, \phi)=\langle e, e\rangle \tag{8}
\end{equation*}
$$

in terms of the original bilinear form $a(\cdot, \cdot)$.

Error Estimates

To find L^{2} estimates, we consider the dual problem in terms of $e=u-u_{h}$

$$
\left\{\begin{array}{l}
-\frac{\alpha^{2} \gamma^{2} \ell_{h} c \omega}{\gamma-1} \Delta \phi_{T}-i \frac{\alpha^{2} \gamma^{2} \omega^{2}}{\gamma-1} \phi_{T}+\alpha \gamma \ell_{v} c \omega \Delta \phi_{P}+i \alpha \gamma \omega^{2} \phi_{P}=e_{T} \\
i \alpha \gamma \omega^{2} \phi_{T}-\gamma \ell_{v} c \omega \Delta z_{P}-i\left(\gamma \omega^{2}+c^{2} \Delta\right) z_{P}=e_{P}
\end{array}\right.
$$

This problem has the crucial property

$$
\begin{equation*}
a(e, \phi)=\langle e, e\rangle \tag{8}
\end{equation*}
$$

in terms of the original bilinear form $a(\cdot, \cdot)$.

Notice the solution ϕ also satisfies

$$
\|\phi\|_{H^{2}} \leq C_{R}\|e\|_{L^{2}}
$$

Error Estimates

$$
\begin{aligned}
\|e\|_{L^{2}}^{2} & =\langle e, e\rangle \\
& =a(e, \phi), \\
& =a\left(e, \phi-\mathcal{I}^{h} \phi\right) \\
& \leq M\|e\|_{H_{0}^{1}}\left\|\phi-\mathcal{I}^{h} \phi\right\|_{H_{0}^{1}} \\
& \leq M C_{\mathcal{I}^{h}} h\|e\|_{H_{0}^{1}}\|\phi\|_{H^{2}} . \\
& \leq K h\|e\|_{H_{0}^{1}} \\
& \leq K h^{2}\|u\|_{H^{2}}
\end{aligned}
$$

(by duality)
(by Galerkin Orthogonality)
(by continuity)
(Approximation estimate)
(Regularity)
(Approximation estimate).

Error Estimates

$$
\begin{aligned}
\|e\|_{L^{2}}^{2} & =\langle e, e\rangle \\
& =a(e, \phi) \\
& =a\left(e, \phi-\mathcal{I}^{h} \phi\right) \\
& \leq M\|e\|_{H_{0}^{1}}\left\|\phi-\mathcal{I}^{h} \phi\right\|_{H_{0}^{1}} \\
& \leq M C_{\mathcal{I}^{h}} h\|e\|_{H_{0}^{1}}\|\phi\|_{H^{2}} \\
& \leq K h\|e\|_{H_{0}^{1}} \\
& \leq K h^{2}\|u\|_{H^{2}}
\end{aligned}
$$

(by duality)
(by Galerkin Orthogonality)
(by continuity)
(Approximation estimate)
(Regularity)
(Approximation estimate).

Theorem (L^{2} Error Estimate)

The FEM error in the L^{2} norm is of size $\mathcal{O}\left(h^{2}\right)$.

Numerical Results

Numerical Results

Numerical Results

To mimic a realistic problem, the following set of physical parameters will be used for all tests:

$$
\begin{aligned}
\ell_{h} & =\ell_{v}=10^{-6} \mathrm{~m} \\
c & =300 \mathrm{~m} / \mathrm{s} \\
\omega & =3.3 e 4 \mathrm{~Hz} \\
\gamma & =1.4 \\
\alpha & =8.8667 \mathrm{~Pa} / \mathrm{K}
\end{aligned}
$$

Numerical Results

To mimic a realistic problem, the following set of physical parameters will be used for all tests:

$$
\begin{aligned}
\ell_{h} & =\ell_{v}=10^{-6} \mathrm{~m} \\
c & =300 \mathrm{~m} / \mathrm{s} \\
\omega & =3.3 e 4 \mathrm{~Hz} \\
\gamma & =1.4 \\
\alpha & =8.8667 \mathrm{~Pa} / \mathrm{K}
\end{aligned}
$$

First, we check that our method is converging at the expected rate for order p basis funtions:

$$
\left\|u-u_{h}\right\|_{L^{2}}=C h^{p+1}
$$

Numerical Results

One-dimensional FEM Convergence
(Linear Basis Functions)

One-dimensional FEM Convergence (Quadratic Basis Functions)

Numerical Results

Two-dimensional FEM Convergence (Linear Basis Functions)

Numerical Results

MUMPS Performance:

16 Core Workstation

Numerical Results

MUMPS Performance:

128 Node Cluster

Two-Dimensional Weak Scaling of MUMPS

Figure: Weak scaling with a fixed 256×256 problem size per processor.

Two-dimensional strong scaling MUMPS

Figure: Strong scaling for a fixed problem size of 1024×1024.

Summary and Future Work

Summary and Future Work

Summary and Future Work

In Summary:

- Surprisingly clean proof for existence and uniqueness.

Summary and Future Work

In Summary:

- Surprisingly clean proof for existence and uniqueness.
- Initial numerical tests validate the model for plane wave solutions.

Summary and Future Work

In Summary:

- Surprisingly clean proof for existence and uniqueness.
- Initial numerical tests validate the model for plane wave solutions.

Future Work:

- Couple an elasticity model capturing the behaviour of the tuning fork.

Summary and Future Work

In Summary:

- Surprisingly clean proof for existence and uniqueness.
- Initial numerical tests validate the model for plane wave solutions.

Future Work:

- Couple an elasticity model capturing the behaviour of the tuning fork.
- Standard linear solvers do not scale well to multi-core machines.

Summary and Future Work

In Summary:

- Surprisingly clean proof for existence and uniqueness.
- Initial numerical tests validate the model for plane wave solutions.

Future Work:

- Couple an elasticity model capturing the behaviour of the tuning fork.
- Standard linear solvers do not scale well to multi-core machines.
\rightarrow Hermitian-Skew Symmetric (HSS) splitting methods may help.

