Block Preconditioners for a Coupled Pressure-Temperature Model of Trace Gas Sensors

Brian Brennan Robert C. Kirby

Baylor University

April 7, 2014

Baylor University

Mathematical Model

Preliminary Numerical Results

Preconditioning

Summary and Future Work

- ▶ A *trace gas* is a gas which makes up less than 1% of the Earth's atmosphere (everything except Nitrogen and Oxygen).
- > A *trace gas sensor* is a very sensitize device for detecting these gases.

- ▶ A *trace gas* is a gas which makes up less than 1% of the Earth's atmosphere (everything except Nitrogen and Oxygen).
- > A *trace gas sensor* is a very sensitize device for detecting these gases.

Current Applications:

- 1. Monitoring atmospheric pollutants
- 2. Leak detection
- 3. Early fire detection on spacecraft

Future Applications:

1. Non-invasive disease diagnosis

Figure: Trace gas sensor resting on the tip of a finger.

Baylor University

Photo-acoustic Spectroscopy:

- We fire a modulated laser between the tines of a quartz tuning fork.
- Present gas molecules become excited.
- Thermal and pressure waves are generated.
- Electrodes on the the tuning fork convert waves to electric current.
- The amplitude of the current determines the amount of gas present.

Introduction to Trace Gas Sensing Current Models:

- Resonant Optothermoacoustic Detection (ROTADE) sensors capture only the thermal wave.
- Quartz-Enhanced Photoacoustic Spectroscopy (QEPAS) sensors capture only the pressure wave.

We seek a model which captures both effects simultaneously.

Mathematical Model

Coupled pressure-temperature equations of gas:

$$\begin{cases} \frac{\partial}{\partial t} \left(T - \frac{\gamma - 1}{\gamma \alpha} P \right) - \ell_h c \Delta T = S(x, t) \\ \gamma \left(\frac{\partial^2}{\partial t^2} - \ell_v c \frac{\partial}{\partial t} \Delta \right) (P - \alpha T) - c^2 \Delta P = 0 \quad \text{in } \mathbb{R}^2 \backslash \Omega_{TF} \quad \text{(1b)} \end{cases}$$

- T: temperature
- S: cylindrically sym. Gaussian heat source
- ℓ_h : heat conduction parameter α : $\left(\frac{\partial P}{\partial T}\right)_{\mu}$.
- A: proportional to gas concentration

- *P*: pressure
- c: sound speed
- ℓ_v : viscosity parameter
- $\gamma: rac{c_p}{c_v}$
- ω : QTF resonance frequency

With a time harmonic source term, we can simplify (1) to the time-independent Helmholtz-like equations:

$$\begin{cases} -i\beta\omega\left(T - \frac{\gamma - 1}{\gamma\alpha}P\right) - \beta\ell_h c\Delta T = S \\ -\gamma(\omega^2 - i\ell_v c\omega\Delta)(P - \alpha T) - c^2\Delta P = 0 \end{cases}$$
(2a) (2b)

where
$$\beta = rac{lpha^2 \gamma^2 \omega}{\gamma - 1}$$
, $T = T_1 + i T_2$ and $P = P_1 + i P_2$.

It will be convenient to view (2) as a system of four partial differential equations of the form Au = b, where

$$A = \begin{pmatrix} -\beta\ell_h c\Delta & \beta\omega & 0 & -\alpha\gamma\omega^2 \\ -\beta\omega & -\beta\ell_h c\Delta & \alpha\gamma\omega^2 & 0 \\ \alpha\gamma\ell_v c\omega\Delta & -\alpha\gamma\omega^2 & -\gamma\ell_v c\omega\Delta & \gamma\omega^2 + c^2\Delta \\ \alpha\gamma\omega^2 & \alpha\gamma\ell_v c\omega\Delta & -(\gamma\omega^2 + c^2\Delta) & -\gamma\ell_v c\omega\Delta \end{pmatrix}$$
(3)

where $u = (T_1, T_2, P_1, P_2)^T$ and $b = (S, 0, 0, 0)^T$.

Preliminary Numerical Results

To mimic a realistic problem, the following set of physical parameters will be used for all tests:

$$\ell_h = \ell_v = 10^{-6} \text{ m}$$

 $c = 300 \text{ m/s}$
 $\omega = 3.3e4 \text{ Hz}$
 $\gamma = 1.4$
 $\alpha = 8.8667 \text{ Pa/K}.$

To mimic a realistic problem, the following set of physical parameters will be used for all tests:

$$\ell_h = \ell_v = 10^{-6} \text{ m}$$

 $c = 300 \text{ m/s}$
 $\omega = 3.3e4 \text{ Hz}$
 $\gamma = 1.4$
 $\alpha = 8.8667 \text{ Pa/K}.$

First, we check that our method is converging at the expected rate for order p basis functions:

$$||u - u_h||_{L^2} = Ch^{p+1}.$$

Preconditioning

For simplicity, we will consolidate the coefficients and define the discrete operator to be

$$A = \begin{pmatrix} a_1 K & a_2 M & | & 0 & -a_3 M \\ -a_2 M & a_1 K & | & a_3 M & 0 \\ -a_4 K & -a_3 M & | & a_5 K & -a_6 M & -a_7 K \\ a_3 M & -a_4 K & | & a_7 K - a_6 M & a_5 K \end{pmatrix}$$
(4)

where \boldsymbol{K} and \boldsymbol{M} are the stiffness and lumped mass matrices, respectively.

Block Jacobi Preconditioner:

$$P_{Jac} = \begin{pmatrix} a_1 K & a_2 M & 0 & 0 \\ -a_2 M & a_1 K & 0 & 0 \\ -\overline{0} & -\overline{0} & -\overline{a_5 K} & -\overline{a_6 M} & \overline{a_7 K} \\ 0 & 0 & a_7 K - a_6 M & a_5 K \end{pmatrix}$$
(5)

Block Gauss-Seidel Preconditioner:

$$P_{GS} = \begin{pmatrix} a_1 K & a_2 M & | & 0 & 0 \\ -a_2 M & a_1 K & | & 0 & 0 \\ -a_4 \overline{K} & -a_3 \overline{M} & | & -a_5 \overline{K} & -a_6 \overline{M} - a_7 \overline{K} \\ a_3 M & -a_4 K & | & a_7 K - a_6 M & a_5 K \end{pmatrix}$$
(6)

Ν	GMRES	Block Jacobi	Block Gauss-Seidel	ILU(3)
32	1156	269	141	12
64	4320	291	154	14
128	10000 +	257	143	44
256		245	134	235
512		231	127	429

Table: Iteration counts for the unpreconditioned GMRES method and GMRES coupled with the block Jacobi, block Gauss Seidel and Incomplete LU factorization preconditioners.

For realistic physical data, $a_1, a_4, a_5 << a_2, a_3, a_6, a_7$. From this realization we propose the following block preconditioner.

$$P = \begin{pmatrix} 0 & a_2 M & 0 & -a_3 M \\ -a_2 M & 0 & a_3 M & 0 \\ 0 & -a_3 M & 0 & a_6 M - a_7 K \\ a_3 M & 0 & a_7 K - a_6 M & 0 \end{pmatrix}$$

Notice the strong skew-symmetric structure.

(7

Eigenvalues

B. Brennan

Baylor University

April 7, 2014 21 / 27

Ν	cond(A)	$\operatorname{cond}(P_{Jac}^{-1}A)$	$\operatorname{cond}(P_{GS}^{-1}A)$	$\operatorname{cond}(P^{-1}A)$
8	1.1135e+05	5.6155e+05	712.6119	1.0072
16	5.2590e+05	6.9769e+07	7.2907e+04	1.0409
32	4.1047e+05	9.6256e+07	1.0562e+05	1.0282

Table: 2-norm condition numbers of the unpreconditioned and preconditioned matrix for various $N \times N$ meshes.

GMRES preconditioned with ${\cal P}$ will converge in approximately 5 outer iterations independently of N!

For each outer GMRES iteration, we must solve the system $P\hat{b} = b$:

$$\begin{pmatrix} 0 & a_2M & 0 & -a_3M \\ -a_2M & 0 & a_3M & 0 \\ a_3M & 0 & a_7K - a_6M & 0 \end{pmatrix} \begin{pmatrix} \hat{b_1} \\ \hat{b_2} \\ \hat{b_3} \\ \hat{b_4} \end{pmatrix} = \begin{pmatrix} b_1 \\ \hat{b_2} \\ \hat{b_3} \\ \hat{b_4} \end{pmatrix}$$

Or by Gaussian elimination:

$$\begin{pmatrix} -a_2M & 0 & | & a_3M & 0 \\ 0 & -a_2M & | & 0 & -a_3M \\ 0 & 0 & | & \bar{K} - \bar{\kappa}^2\bar{M} & 0 \\ 0 & 0 & | & 0 & K - \bar{\kappa}^2M \end{pmatrix} \begin{pmatrix} \hat{b}_2 \\ \hat{b}_1 \\ \hat{b}_4 \\ \hat{b}_3 \end{pmatrix} = \begin{pmatrix} b_2 & | & b_1 \\ 0 & | & b_1 \\ \frac{1}{a_7}(b_4 + \frac{a_3}{a_2}b_4) \\ -\frac{1}{a_7}(b_3 + \frac{a_3}{a_2}b_1) \end{pmatrix}$$

where $\kappa^2 = \frac{a_6}{a_7} - \frac{a_3^2}{a_2 a_7}$ is the Helmholtz wavenumber. B. Brennan Baylor University Consider the complex shifted Laplacian matrix $P_H = K - (\alpha + i\beta)\kappa^2 M$ as a ML Helmholtz preconditioner:

(lpha,eta)	$\kappa = 25$	$\kappa = 50$	$\kappa = 100$
(0,0)	11	25	70
(0,0.5)	12	27	91
(0,1)	13	31	103
(0.5,0)	6	19	64
(0.5,0.5)	10	23	77
(1,0)	112	308	1000+
(0.5,1)	12	28	96
(1,0.5)	9	20	56
(1,1)	12	29	92

Table: For each test, the number of mesh points per wavelength is kept constant by enforcing $\kappa h \leq \pi/5$.

B. Brennan

Baylor University

Helmholtz Eigenvalues

 $\rho(H)$

Summary and Future Work

Summary and Future Work

In Summary:

- Initial numerical tests validate the model for plane wave solutions.
- > Development of an effective preconditioner.
- Global coupled problem has been reduced to two sub-Helmholtz problems.

Future Work:

- Test other options for solving Helmholtz equation.
- Couple an elasticity model capturing the behaviour of the tuning fork.