Welcome to the Sheesley lab!

In the Sheesley lab, we are interested in understanding local to global impacts of atmospheric particulate matter.  Our work on air quality spans several continents, with studies in the Upper Midwest, Southern California, Scandinavia, South Asia and now the North American Arctic. Carbonaceous aerosols in the atmosphere are a continually changing complex mixture that interacts with the biosphere, impacts climate change and can have negative effects on human health. In order to understand the impacts of carbonaceous aerosols, the chemical composition needs to be investigated; to effectively mitigate the impact, sources of the aerosols need to be defined. This thesis has been the basis of the Sheesley lab’s aerosol studies. We have focused our efforts on refining methods for the analysis of organic tracers, the application of source apportionment models and characterization of sources and transport using carbon isotopes. The Sheesley Lab is also interested in using these methods to assess the global impacts of primary and secondary carbonaceous aerosols on climate change and human health. The integration of organic tracer and isotope analysis into larger biosphere and human health impact research projects provides distinct advantages for statistical analysis and a source-oriented perspective.

Recent press:  https://ensia.com/features/black-carbon/

Recent publications:

Gunsch, M. J., Kirpes, R. M., Kolesar, K. R., Barrett, T. E., China, S., Sheesley, R. J., Laskin, A., Wiedensohler, A., Tuch, T. & Pratt, K. A. (2017). Contributions of transported Prudhoe Bay oil field emissions to the aerosol population in Utqiaġvik, Alaska. Atmospheric Chemistry and Physics, 17(17), 10879-10892.

Barrett, T. E., and R. J. Sheesley (2017), Year-round optical properties and source characterization of Arctic organic carbon aerosols on the North Slope Alaska, J. Geophys. Res. Atmos., 122, 9319–9331, doi:10.1002/2016JD026194.

Sheesley, R. J., Nallathamby, P. D., Surratt, J. D., Lee, A., Lewandowski, M., Offenberg, J. H., Jaoui, M., & Kleindienst, T. E. (2017). Constraints on primary and secondary particulate carbon sources using chemical tracer and 14 C methods during CalNex-Bakersfield. Atmospheric Environment, 166, 204-214.

Bikkina, S., Andersson, A., Ram, K., Sarin, M. M., Sheesley, R. J., Kirillova, E. N., Rengarajan, R., Sudheer, A.K. & Gustafsson, Ö. (2017). Carbon isotope‐constrained seasonality of carbonaceous aerosol sources from an urban location (Kanpur) in the Indo‐Gangetic Plain. Journal of Geophysical Research: Atmospheres, 122(9), 4903-4923.

Sinha, P. R., Kondo, Y., Koike, M., Ogren, J. A., Jefferson, A., Barrett, T. E., Sheesley, R. J., Ohata, S., Moteki, N., Coe, H., Liu, D., Irwin, M., Tunved, P., P. K., Zhao, Y. (2017) Evaluation of black carbon measurements in the Arctic. Journal of Geophysical Research: Atmospheres, 122(6), 3544-3572.

Clark, A. E., Yoon, S., Sheesley, R. J., & Usenko, S. (2017). Spatial and Temporal Distributions of Organophosphate Ester Concentrations from Atmospheric Particulate Matter Samples Collected across Houston, TX. Environmental Science & Technology, 51(8), 4239-4247.

Comments are closed.